CHAPTER

11

Al for shrubland identification
and mapping
Michael J. Mahoney”, Lucas K. Johnson®, and Colin M. Beier”

*Graduate Program in Environmental Science, State University of New York College of

Environmental Science and Forestry, Syracuse, NY, United States bDepartment of Sustainable
Resources Management, State University of New York College of Environmental Science and
Forestry, Syracuse, NY, United States

1 Introduction

This chapter walks through a procedure for predicting the prevalence of “shrubland” (de-
fined here as low-statured vegetation between 1 and 5m in height) across a diverse region in
New York State, patterned off the process used in Mahoney et al. (2022a). Due to the impacts
of climate change and human land use patterns, these shrublands are becoming an increas-
ingly important land cover type in the region, often representing an entirely novel ecosystem
type. As a result of this novelty, these shrublands and the roles they play in the larger land-
scape (for instance, as habitats and as components of biogeochemical cycles) are poorly un-
derstood. Even identifying shrublands using remote sensing data, a potential way to monitor
their development over time, is difficult given the relative rarity of shrublands in this region
and their similar appearance to forest lands and wetlands in satellite imagery.

The chapter introduces step by step how to fit a feedforward neural network using the
Keras module in the popular TensorFlow package and a subset of the data from Mahoney
et al. (2022a). Due to the rarity of shrubland in this region of New York, the chapter focuses
on the adjustments necessary when building models from data with imbalanced classes, and
on how to interpret model performance metrics when fitting classification models for specific
purposes. Chapter exercises prompt learners to investigate how different priorities for a
model might result in notably different performance measures.

Antificial Intelligence in Earth Science 295 Copyright © 2023 Elsevier Inc. All rights reserved.
https://doi.org/10.1016/B978-0-323-91737-7.00010-4

https://doi.org/10.1016/B978-0-323-91737-7.00010-4

296 11. Al for shrubland identification and mapping

2 What you’ll learn

* Ways to think about “model performance” in the context of machine-learning shrubland
classification models

* Creating a model for imbalanced classes

¢ Fitting a simple feedforward neural network with Keras and TensorFlow

* Rasterizing model predictions for visualization

3 Background

Human land use has fundamentally reshaped the structure and composition of the sur-
rounding environment, leaving lasting legacies including the emergence of novel communi-
ties and ecosystem types (Foster et al., 1998; Cramer et al., 2008). Among the outcomes of these
changes, the emergence of low-statured vegetation or “shrublands” as a more common cover
type in the US Northeast has been suggested by numerous field studies, but is poorly under-
stood from a landscape perspective. Although long disregarded, these lands are rapidly
gaining attention in today’s urgent push to implement “natural climate solutions”
(Fargione et al., 2018) and identify “marginal” or “underutilized” lands for renewable energy
generation.

However, current limitations to the classification and mapping of these cover types pose
obstacles to advancing both science and stewardship opportunities (Hobbs et al., 2009).
Shrublands are a very challenging cover class to identify from imagery alone, given the
breadth of community types included and the high variability in density and canopy cover
that exists within and among those community types (King and Schlossberg, 2014). In prac-
tical terms this means that, when relying solely on imagery, shrublands encompass a full gra-
dient from resembling herbaceous or barren land to resembling closed-canopy conditions
(Brown et al., 2020). As a result, satellite or aerial imagery-based approaches tend to classify
shrubland categories with substantially lower accuracy than other land use and land cover
(LULC) classes (Wickham et al., 2021; Brown et al., 2020).

A solution for this problem might be to incorporate additional, nonimagery sources of re-
mote sensing data into LULC classification methodologies. LIDAR data collected through air-
borne laser scanning can provide essential information for identifying low-statured
vegetation such as early-successional forests (Falkowski et al., 2009). In combination with im-
agery, LIDAR data can enable continuous, broad-scale estimation of canopy heights and other
structural traits which greatly simplify the task of distinguishing between low-statured and
taller closed-canopy cover types (Ruiz et al., 2018). Unfortunately, the cost and logistical chal-
lenges of airborne LiDAR collection have constrained its availability to smaller extents and
with much longer return intervals than provided by satellite imagery. Yet if canopy structural
estimates from airborne LiDAR could be used to label a training dataset in order to fit models
using satellite imagery, it should be possible to produce models capable of identifying shrub-
land with greater accuracy than those trained on imagery alone, while being able to map/
model a larger and more contiguous spatial extent than models relying on airborne LiDAR
data as predictors.

4 Prerequisites 297

As such, we undertook a project aiming to use an AI/ML based approach to identify prob-
able “shrubland” areas across New York State, USA, using predictors derived from optical
imagery classified as “shrubland” using available aerial LIDAR data. Full details on this pro-
ject are available in Mahoney et al. (2022a). This chapter uses a subset of the data used in
Mahoney et al. (2022a) to walk through our modeling approach and discuss the specific con-
cerns associated with attempting to model a relatively rare land cover class across large
regions.

4 Prerequisites

This chapter was created using Python version 3.8.13 (Python Core Team, 2022), TensorFlow
version2.9.1 (Abadietal., 2015; Chollet, 2015), scikit-learn version 1.1.2 (Pedregosa et al., 2011),
pandas version 1.4.3 (The Pandas Development Team, 2020; McKinney, 2010), numpy version
1.23.1 (Harris etal., 2020), pydot 1.4.2 (Carrera et al., 2021), matplotlib 3.5.3 (Hunter, 2007), and
rasterio 1.3.0 (Gillies etal., 2013). While the code in this chapter may work with other versions, it
has not been tested with other configurations, and the code may produce different results.

All of the required libraries can be installed using the command:

pip install \
tensorflow==2.9.1 \
scikit-Tearn==1.1.2 \
numpy==1.23.1 \
pandas==1.4.3 \
pydot==1.4.2 \
matplotlib==3.5.3 \
rasterio==1.3.0

This command will install the main libraries we’ll be relying upon, alongside all of the
other libraries these need in order to work properly. Because these “dependencies” are
installed automatically, this command also installs all of the other libraries we'll be using
throughout this chapter.

We'll be working with a subset of the data used in the original study, published on Zenodo
(Mahoney et al., 2022b). The following code can be used to download the data and unpack itin
the current working directory. Note that the data is approximately 1.3 gigabytes, and as such
can take a while to download over slow connections.

import urllib.request
from zipfile import ZipFile

urllib.request.urlretrieve(
"https://zenodo.org/record/6824173/files/data.zip?download=1",
"data.zip",

)

ZipFile("data.zip", "r").extractall(".")

https://zenodo.org/record/6824173/files/data.zip?download=1

298 11. Al for shrubland identification and mapping

46°N

44°N

43°N

42°N

80°W 78°W 76°W 74°W 72°W

Study Area [

FIG. 1 A map showing the location of the study area (filled blue polygon) within New York State.

This directory contains a file, 3_county_2014. csv, which contains all the data we’ll use to fit
models in this chapter. Each row in this CSV represents a 30-m square “pixel” of land in New
York’s lower Hudson River valley (Fig. 1). This study area includes Duchess, Orange and Ul-
ster counties, and has a wide variety of land cover types ranging from highly urbanized areas
along the Hudson River to the highly forested, largely protected Catskill Mountains in the
western part of the study area. The data only reflects areas that are classified as vegetation
based on the US Geological Survey’s Land Change Monitoring, Assessment, and Projection
(LCMAP) data set’s primary land cover classification (Brown et al., 2020). As a result, most
bodies of water and urban areas are excluded from the data.

In order to focus primarily on the modeling process, we'll be skipping most of the work
involved in collecting and processing data. Instead, we’ll use a set of predictors precalculated
from Landsat imagery collected between July 1st, 2014, and September 1st, 2014 (Table 1).
These predictors were adjusted using the Landtrendr algorithm in order to fill in gaps from
clouds and shadows and remove noise from each pixel (Kennedy et al., 2010; Kennedy et al.,
2018). More detail on the data retrieval and preprocessing procedures can be found in
Mahoney et al. (2022a).

These predictors are also included as a TIFF file, 3_county_2014.tiff, projected using the
PRQOJ string:

+proj=aea +lat_0=23 +lon_0=-96 +lat_1=29.5 \
+lat_2=45.5 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs

5 Model building 299

TABLE 1 Definitions of predictors used for model fitting.

Raster band name

Definition

TCB, TCW, TCG

NBR
MAG, YOD

PRECIP, TMAX,
TMIN

ASPECT, DEM,
SLOPE, TWI

LCSEC

Tassled cap brightness (TCB), wetness (TCW), and greenness (TCG), with noise removed
using Landtrendr

Normalized burn ratio (NBR) with noise removed using Landtrendr

Magnitude (MAG) and year of most recent disturbance (YOD), as identified using
Landtrendr

30-year normals for precipitation (PRECIP), maximum temperature (TMAX), and
minimum temperature (TMIN), derived from annual PRISM climate models

Aspect, elevation (DEM), slope, and topographic wetness index (TWI) derived from a 30-m
digital elevation model

LCMAP secondary land cover classification

You can open this TIFF file in any GIS software in order to see the actual distribution of

each predictor throu

ghout the study area.

5 Model building

5.1 Preprocessing

With our libraries

installed and our data downloaded, we're ready to begin! First things

first, let’s load all the libraries we’ll be using:

We’11 be working with our data primarily as pandas DataFrames

and converting

them to numpy arrays as necessary:

import numpy as np

import pandas as

pd

We’11 set a random number seed
to ensure reproducibility across notebook runs.

1
First, set the
import os

environment variable ’PYTHONHASHSEED® to O:

os.environ[’PYTHONHASHSEED’ J=str(0)

Now, set the ra
import random
random.seed(123)

ndom seeds from the ‘random‘ and ‘numpy‘ packages:

np.random.seed(123)

We’11 use sciki
and for splitti
import sklearn

t-Tearn for normalizing our data,
ng our data into training-validation-testing sets:

from sklearn.preprocessing import StandardScaler

from sklearn.model_selection import train_test_split

300 11. Al for shrubland identification and mapping

We’11 use Keras, installed as part of Tensorflow, for model fitting:
import tensorflow as tf
from tensorflow import keras

Set one more random seed value, this time from Tensorflow itself:
tf.random.set_seed(123)

Initialize our GPUs to use memory growth, in order to work better

when multiple jobs are using the same GPU

gpu_devices = tf.config.experimental.list_physical_devices("GPU")

for device in gpu_devices:
tf.config.experimental.set_memory_growth(device, True)

With our environment all ready, we can go ahead and start preprocessing our data into an
Al-ready format. Our data has been filtered to only include areas that LCMAP (Brown et al.,
2020) has identified as being vegetated. As a result, all of our data represents areas that were
classified by LCMAP as being either agricultural, forestland, herbaceous/grassland, or wet-
land areas.

Let’s load that data into our session now, and then pop the label column (named shrub) out
as its own object:

full_data = pd.read_csv("data/3_county.csv")
full_labels = full_data.pop("shrub")

If all has gone as planned, ful1_data should now be a data frame with roughly 7 million
observations of 17 separate features. These features are primarily variables derived from
Landsat imagery, but also include the X and Y coordinate positions of each pixel of the raster,
and the LCMAP secondary land cover classification (stored as 1csec_2014; Table 1):

print(full_data.ilocl[:, 0:6].head(n=5))

X y lTcsec_2014 tcb_2014 tcw_2014 tcg_2014
0 1788750 2339280 4 2995 -638 2642
1 1788780 2339280 3 2759 -487 2437
2 1788480 2339250 1 2655 -634 2259
3 1788510 2339250 4 2908 -720 2253
4 1788720 2339250 4 3153 -698 2726

In the 3_county file, that “LCSEC” feature is stored as a single categorical variable, mean-
ing the variable’s value can only be chosen from a group of candidate values, with each dif-
ferent value indicating a different land cover class. However, ML models cannot directly
digest categorical variables as ML models tend to output continuous values. In order for
ML models to make use of this information, we need to encode this single categorical
variable into a number of Boolean indicator variables, transposing our single categorical
variable into a set of Booleans. We can do this using the get_dummies() function from
pandas:

5 Model building 301

full_data = pd.concat(

[

full_data,

pd.get_dummies(full_datal["lcsec_2014"], prefix="1Tcsec", drop_first=True),
1,
axis=1,

)
print(full_data.ilocl[:, 16:23].head(n=5))

lcsec_2 1Tcsec_3 Tlcsec_4 lcsec_5 1lcsec_6 Tcsec_8
0 0 0 1 0 0 0
1 0 1 0 0 0 0
2 0 0 0 0 0 0
3.0 0 1 0 0 0
4 0 0 1 0 0 0

With the “LCSEC” categorical variable encoded, the next step is to drop the variables we
don’t intend to use in our model. Specifically, we're going to drop the 1csec_2014 column, as
it’'s now encoded as a number of Boolean variables. We’ll also be dropping the x and y coor-
dinate variables:

full_features = full_data.drop(["lcsec_2014", "x", "y"], axis=1)
print(full_features.iloc[:, 0:6].head(n=5))

tcb_2014 tcw_2014 tcg_2014 nbr_2014 mag_2014 yod_2014

0 2995 -638 2642 737 0 0
1 2759 -487 2437 750 0 0
2 2655 -634 2259 708 0 0
3 2908 -720 2253 678 0 0
4 3153 -698 2726 742 0 0

Now that we have the full set of variables we intend to use to fit our ML models, it’s time to
split our data to create a “hold-out” test set that we'll use to assess our final model. Normally
20% of the data will be allocated to the test set, to make sure that there are enough observa-
tions to assess our final models while also leaving enough data behind to train our neural net.
We'll use the train_test_split() function from scikit-learn to create these splits:

[train_features, test_features, train_labels, test_labels] = train_test_split(
full_features, full_labels, test_size=0.2, random_state=123,
stratify=full_Tlabels
)

That test set will be used to calculate the our final performance metrics after our ML model
training finished. We’ll still want to assess all the intermediate models produced during
model training! To do so, we’ll need to split our data one more time to create a
“validation set,” which will be used to evaluate models and get out-of-sample performance
estimates before we're ready to use our final test set. Just like before, we’ll use
train_test_split() to take 20% of the remaining training set to produce our validation set:

302 11. Al for shrubland identification and mapping

train_features,
validation_features,
train_labels,
validation_Tlabels,
] = train_test_split(
train_features, train_labels, test_size=0.2, random_state=123,
stratify=train_labels
)

Now that we’ve split our data into training, validation, and testing sets, it’s time for the
last bit of preprocessing before we start fitting our models. First, we’ll need to convert our
data into numpy arrays, a data format that Keras will automatically understand and work
with:

train_features = np.array(train_features)
validation_features = np.array(validation_features)
test_features = np.array(test_features)

Secondly, we'll need to standardize our data so that all of the input variables have zero
mean and unit variance. To do this, we’ll use the StandardScaler () function from scikit-learn.
We'll initialize the rescaler on our training data, to calculate the mean and standard deviation
of each feature using the training data alone:

scaler = StandardScaler()
train_features = scaler.fit_transform(train_features)

And then we'll use the same rescaler to transform our validation and test data. It’s very
important to make sure you're not including your evaluation data when fitting the rescaler,
as this is a form of “data leakage” which makes your final model evaluation not truly inde-
pendent from the model fitting process, meaning your reported accuracy might be too opti-
mistic when compared to the model’s real-world performance.

validation_features = scaler.transform(validation_features)
test_features = scaler.transform(test_features)

We're also going to go ahead and transform our numpy arrays into TensorFlow datasets,
which will make fitting and evaluating our models more efficient. By batching our data and
setting it to prefetch future batches, we'll speed up the modeling process:

train_ds = (
tf.data.Dataset.from_tensor_slices((train_features, train_labels))
.batch(64)
.prefetch(2)

)

val_ds = (
tf.data.Dataset.from_tensor_slices((validation_features, validation_labels))
.batch(64)
.prefetch(2)

5 Model building 303

test_ds = (
tf.data.Dataset.from_tensor_slices((test_features, test_labels))
.batch(64)
.prefetch(2)

)

The final preparation step is going to be determining class weights for tuning our model.
Our data is extremely imbalanced, because most of New York State is not shrubland—our
“positive” shrubland class is much, much smaller than the “negative” not-shrubland class:

neg, pos = np.bincount(train_labels)
total = neg + pos
print(
"Examples:\n Total: {}\n Positive: {} ({:.2f}% of total)\n".format(
total, pos, 100 * pos / total

)
Examples:
Total: 4585730
Positive: 70213 (1.53% of total)

Because shrubland only constitutes about 1.5% of all observations, our model could
achieve 98.5% accuracy by never predicting shrubland! As such, we need to do something
to make our model “care” more about our positive shrubland class, in order to make sure
the model is attempting to predict both classes.

There are several different approaches we could take to balance our classes, including
resampling or downsampling so that our training data had the same number of observations
in each class. However, when possible it’s often more efficient to set the weights of each class
in your model, to make the model “care” more about getting the right answer on your less
prevalent class. Here, we'll calculate how much we need to adjust the class weights so that
the positive shrubland class is as important as the negative not-shrubland class in the ML
model’s decision making:

class_weight = {
0: (1 / neg) * (total / 2.0),
1: (1 / pos) * (total / 2.0)
}
class_weight

{0: 0.5077746357726036, 1: 32.65584720778204}

Notice that we calculated these class weights using only our training data labels. Just as
with rescaling your data, including your evaluation data when calculating class weights
can be a form of data leakage which makes your evaluation data nonindependent and your
reported accuracy metrics too optimistic.

304 11. Al for shrubland identification and mapping

5.2 Model fitting

With the training data rescaled and class weights calculated, we're ready to get into the
modeling process. Simple models can give stable decent performance at lower cost, while
the fancy more cutting-edge models can do better in accuracy but have a toll on costs and
complexity. We'll be fitting a relatively straightforward feedforward neural net, using the
Keras module of the TensorFlow library (Chollet, 2015; Abadi et al., 2015; LeCun et al., 2015).

In order to assess how well our models perform, we'll need to calculate several different
metrics. Classification models can be tricky to assess, however, because your priorities and
targets for a model determine what makes a model “better.” Even the metrics you use to as-
sess your model may vary as a result of your modeling goals. For instance, models of rare but
highly-important events—such as models for detecting credit card fraud, or screening for
diseases—might prioritize catching as many “positive” cases as possible, even if that means
increasing the number of “false positive” classifications from the model. Other models, how-
ever, might have the exact opposite preference; for instance, a model predicting what stocks
might be good investment decisions might prefer to only predict “sure bets,” and would be
willing to produce more false negatives in order to avoid spending money on bad
investments.

In our situation, where we’re modeling a relatively rare land cover classification, we're
willing to accept some false positives to make sure that we're capturing as much shrubland
as possible. At the same time, we want to make sure that our shrubland predictions are as
precise as possible, so that when our model classifies a pixel as “shrubland” we can be de-
cently sure it is truly a shrubland pixel. As such, we’ll calculate a number of different model
metrics, but are going to focus in particular on precision and PRC, the area under the
precision-recall curve, as the way we interpret and understand our results.

Let’s go ahead and define all the metrics we want to calculate when evaluating our models:

metrics = [
keras.metrics.TruePositives(name="True_Positives"),
keras.metrics.FalsePositives(name="False_Positives"),
keras.metrics.TrueNegatives(name="True_Negatives"),
keras.metrics.FalseNegatives(name="False_Negatives"),
keras.metrics.BinaryAccuracy(name="Binary_Accuracy"),
keras.metrics.Precision(name="Precision"),
keras.metrics.Recall(name="Recall"),
keras.metrics.AUC(name="AUC"),
keras.metrics.AUC(name="PRC", curve="PR"),

]

With our metrics defined, our next step is to create the actual model structure. For the pur-
poses of this chapter, we’ll use a straightforward feedforward neural network, with a total of
six densely connected layers and a single dropout layer. We can define the model using Keras’
sequential API like so:

def make_model (metrics=metrics):
Create a model object using the sequential API:

5 Model building 305

model = keras.Sequential(

[
Add a dense layer, using:
+ 256 neurons
+ The rectified linear unit ("RelU") activation function
+ An input Tayer with the same number of neurons
as predictors in our training data
keras.layers.Dense(
256, activation="relu", input_shape=(train_features.shapel[-11,)
),
Add another dense layer, this time with 128 neurons:
keras.layers.Dense(
128, activation="relu"),
Another with 64:
keras.layers.Dense(
64, activation="relu"),
Another with 32:
keras.layers.Dense(
32, activation="relu"),
And another with 16:
keras.layers.Dense(
16, activation="relu"),
Add a dropout layer.
This will randomly set 20% of the inputs --
-- that is, the outputs from the last dense layer --
to 0, which helps protect against overfitting
keras.layers.Dropout(0.2),
Finally, add a dense layer with a single neuron,
using the "sigmoid" activation function
1
This will produce our final probability predictions
keras.layers.Dense(1l, activation="sigmoid"),
]

)

model.compile(
Use "Adaptive Moment Estimation" optimization to tune weights
1
This algorithm will adjust the weights of each neuron in
the network every epoch, attempting to optimize the loss function
defined in the next argument
1
While the details are somewhat complicated, for applied purposes
it’s often practical to just use the Adam optimizer with a rather
small "learning rate" to achieve a decent model

306 11. Al for shrubland identification and mapping

optimizer=keras.optimizers.Adam(learning_rate=le-3),
Use the most standard loss for binary classification models,
binary cross-entropy, to judge how well our model is doing.
i
Lower cross-entropy values are better.
loss=keras.losses.BinaryCrossentropy(name="Binary_Cross_Entropy"),
In addition to calculating our cross-entropy loss at each step
and adjusting our model weights, we’11 also ask Keras to calculate
the metrics we defined earlier for every epoch
metrics=metrics,
)
return model

The bulk of this model is made up of “dense” layers, which are made up of some number of
“neurons” (between 256 and 16). Each of those neurons takes the results from every neuron in
the previous layer as input, and transforms them using a standard formula:

input - kernel + bias (1)

Where kernel is a weights matrix created by each layer, and bias is a bias vector created by
each layer.

The output of this formula is then run through an “activation function” in order to get the
final output from each neuron. In this case, almost all of our layers are using the “relu” ac-
tivation function, which stands for “rectified linear unit.” For a given value x, this function
returns x if x is positive and 0 otherwise:

max (0, x) (2)

The outputs from this activation function are then provided as inputs to every neuron in
the next layer of the neural net.

In addition to these densely connected layers, this neural net also has a dropout layer at the
end of the net. This layer takes the inputs from all the neurons in the previous layer and ran-
domly sets 20% of them to 0, reducing the model’s ability to overfit on the training data.

Last but not least, the results from that dropout layer are passed as inputs to our final dense
layer. Unlike the other dense layers, this layer—which we refer to as the “output” layer—is
only going to generate a single result, which will be our predicted probability.

Because we want to predict probability, which ranges from 0 to 1, we want to make sure
our output layer will only predict probabilities between 0 and 1. In order to do so, we use the
“sigmoid” activation function, which transforms a given input x via the formula:

1
1+e™

©)

This activation function will force our predictions to fall between 0 and 1 as desired. Be-
cause this layer only has a single neuron, it will generate a single output; this is how we’ll
generate predictions for each observation in our data and eventually for every pixel in
our map.

All told, our model looks something like the schematic in Fig. 2, with a single input layer, a
number of densely connected “hidden” layers, a dropout layer, and finally the single neuron
output layer which will generate our final predictions.

5 Model building 307

Hidden layers Dropout layer

Input layer ’ .
o N
S,
e ki C N
O b A S

FIG. 2 A diagram of a feedforward neural network using densely connected layers.

We can also visualize this specific model, using the plot_model() function from keras.
utils. This function will give us the schematic in Fig. 3, showing the type of layers we're using
(either “InputLayer,” “Dense,” or “Dropout”), the activation function in use (either “relu” or
“sigmoid”), the number of inputs to each neuron in the layer, and the number of outputs gen-
erated by the layer.

shrubland_model = make_model()

keras.utils.plot_model(
shrubland_model, show_shapes=True, show_layer_activations=True, dpi=1200
)

As we're fitting a rather deep neural network against rather simple structured data, we
need to be careful to avoid overfitting while we train the model. As a result, we should define
a way to stop our training process early once we stop seeing improved accuracy against the
validation data set. We can use the EarlyStopping() function to enforce this behavior, so that
we’ll cut the training process short once we stop seeing improvements in PRC against the
validation data:

early_stopping = tf.keras.callbacks.EarlyStopping(
monitor="val_PRC", verbose=1, patience=10, mode="max",

restore_best_weights=True

)

And now we’re ready to fit the model! Because we’re using early stopping, we can set
the number of epochs to use extremely high, as we’ll automatically use the most successful
iteration for our final model. We’ll also make sure to use the class weights we defined
earlier:

308

11. Al for shrubland identification and mapping

dense_input | input: | [(None, 19)]
InputLayer | output: | [(None, 19)]
dense input: | (None, 19)
Dense | relu | output: | (None, 256)
dense 1 input: | (None, 256)
Dense | relu | output: | (None, 128)
dense 2 input: | (None, 128)
Dense | relu | output: | (None, 64)
dense 3 input: | (None, 64)
Dense | relu | output: | (None, 32)
dense 4 input: | (None, 32)
Dense | relu | output: | (None, 16)

l

dropout | input: | (None, 16)
Dropout | output: | (None, 16)
dense 5 input: | (None, 16)

Dense | sigmoid

output: | (None, 1)

FIG. 3 A schematic showing the structure of our neural network.

5 Model building 309

resampled_history = shrubland_model.fit(
train_ds,
steps_per_epoch=20,
epochs=1000,
callbacks=[early_stopping],
validation_data=(val_ds),
class_weight=class_weight,
verbose=0,

)

Restoring model weights from the end of the best epoch: 49.

Epoch 59: early stopping

It appears that our model’s PRC score stops improving after 49 epochs, which due to our
“patience” value of 10 causes our early stopping rules to kick in after epoch 59. We can visu-
alize this process by plotting the PRC values from each epoch of model training, using the
resampled_history object returned from the fitting process:

import matplotlib.pyplot as plt

plt.plot(resampled_history.history["PRC"], Tabel="PRC (training data)")
plt.plot(resampled_history.history["val_PRC"], Tabel="PRC (validation data)")
plt.ylabel("Metric value")

plt.xlabel ("Epoch number")

plt.legend(Toc="upper left")

plt.show()

This graph (Fig. 4) provides more information about the model fitting process than simply
knowing when our early stopping rules kicked in. It appears that, even though our highest
PRC score was achieved after 49 epochs, we might have achieved even higher PRC values had
early stopping not kicked in.

For the purposes of this tutorial, we're going to continue using the model produced after
49 epochs. Later, as part of the Assignment section of the chapter, you might want to try other
parameters in the early stopping function to see if you can improve the performance of the
model.

5.3 Model evaluation

And just like that, we have a neural net trained to identify shrubland! Now that our model
is fully trained (after 49 epochs), the next step is to evaluate it against our hold-out test data
frame. We can use the evaluate() method of our model object to do so:

results = shrubland_model.evaluate(test_ds, verbose=0)

for name, value in zip(shrubTand_model.metrics_names, results):
print(name, ": ", value)
print()

loss :0.4313044250011444
True_Positives :19575.0
False_Positives :424301.0

310 11. Al for shrubland identification and mapping

—— PRC (training data)
0.30 1 —— PRC (validation data)
0.25 A
S
= 0.20 1
>
(S}
£ 0.15 1 /1 E
=
0.10 A
0.05 A
0 10 20 30 40 50 60

Epoch number

FIG. 4 Precision-recall curve (PRC) at each epoch of model training. Higher PRC values indicate a better classifier.

True_Negatives :986799.0
False_Negatives : 2366.0
Binary_Accuracy : 0.7022646069526672
Precision :0.04410015419125557
Recall :0.8921653628349304

AUC : 0.8874118328094482

PRC :0.1810697615146637

We'll discuss these results in more detail in the Discussion (Section 6). For now, though,
make note of how high our model’s AUC (area under the ROC curve) is, compared to its
PRC (area under the precision-recall curve) and precision.

Last but not least, it’s time for us to visualize our predictions to get a sense of where our
model believes we’re most likely to find shrublands. In order to map our results, we need to
first generate a prediction for each cell in our raster. To do that, we need to first preprocess our
full data set in the same way as our training and test data by rescaling it and transforming it to
a TensorFlow dataset:

full_array = np.array(full_features)
full_array = scaler.transform(full_array)

full_ds
full_ds

tf.data.Dataset.from_tensor_slices((full_array, full_labels)).cache()
full_ds.batch(64).prefetch(2)

We can then generate a prediction for each cell of our raster using our model’s predict ()
method:

predictions = pd.DataFrame(shrubland_model.predict(full_ds, verbose=0))
full_data = pd.concat(
[full_data, predictions],
axis=1,
)

5 Model building 311

Now all that’s left is to save our predictions out as a raster file, so that we can visualize them
in our favorite GIS tool. In order to save space, we’ll only save our X and Y coordinates and
predictions in the output raster, producing a simple XYZ raster file:

location_predictions = full_datal["x", "y", 0]]
location_predictions.columns = ["x", "y", "z"]

We'll use rasterio in order to save this out as a raster file that GIS tools will understand.
Let’s import it (and its dependency, affine) now:

import rasterio
from affine import Affine

A raster file is effectively an array of values, with each cell’s X and Y position in the array
corresponding to its X and Y position in space. As such, in order to create a raster file we must
first transpose our one-dimensional column of predictions into a two-dimensional array.

Our first step in this process is to find the corners of our data’s bounding box:

xmin = location_predictions["x"].min()
xmax = location_predictions["x"].max()
ymin = location_predictions["y"J].min()
ymax = location_predictions["y"].max()

We then need to identify the cell positions of each pixel in our data set:

Resolution of our Landsat-derived predictors:
Each observation represents a 30-meter square "pixel" of the map
pixel_size = 30

Identify the X and Y values for each pixel in our output raster
xv = pd.Series(np.arange(xmin, xmax + pixel_size, pixel_size))
yv = pd.Series(np.arange(ymin, ymax + pixel_size, pixel_size)[::-11)

Get the X and Y cell indices for each of these pixels
xi = pd.Series(xv.index.values, index=xv)
yi = pd.Series(yv.index.values, index=yv)

And we'll then use those positions to create an empty array, which we’ll then fill in with
our predicted values:

Create an empty array of the proper size for our data:
nodata = -9999.0
zv = np.ones((len(yi), len(xi)), np.float32) * nodata

Fi11 in the array with our predicted values, wherever they exist:
zv[

yillocation_predictions["y"]].values, xil[location_predictions["x"]].values
] = location_predictions["z"]

312 11. Al for shrubland identification and mapping

And just like that, we’ve transformed our single-dimension prediction vector into a two-
dimensional array. All that remains is to translate that array from a numpy array into a raster
file. We'll first define a transformation, to give rasterio instructions on how much area each of
our array cells should represent:

transform = Affine(pixel_size, 0, xmin, 0, -pixel_size, ymax) * Affine.translation(
-0.5, -0.5
)

And then lastly we’ll use rasterio and this transformation to actually write our values out to
a GeoTIFF file:

This is the PROJ string for the raster data used in this study

It represents how to associate the X and Y coordinates with real world data
projection = "+proj=aea +lat_0=23 +lon_0=-96 +lat_1=29.5 +lat_2=45.5"
projection = projection + " 4+x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs"

with rasterio.open(
Our output file name
"predictions.tiff",
What mode to open the file in - here, write mode

"W
What driver to use to write our file
"GTiff",

Number of columns to write

len(xi),

Number of rows to write

len(yi),

How many "bands" to write

1,

projection,
The transformation created above
transform,
What data type to save as
rasterio.float32,
What value indicates a missing value
nodata,
) as ds:
ds.write(zv.astype(np.float32), 1)
Once we've saved this GeoTIFF file, we can visualize it in any GIS program to see where
our model predicts shrubland is located (Fig. 5).

6 Discussion

So we’ve fit our models, predicted our data, and made a map of the results. But what do our
results actually mean, both for our ability to identify shrubland and for how we understand
model performance?

6 Discussion 313

42.2°N

42.0°N

41.8°N

41.6°N

41.4°N

75.0°W 74.5°W 74.0°W

Shrubland probability (%) - -
0% 25% 50% 75% 100%

FIG. 5 A map of predicted probability of shrubland occurrence across New York’s lower Hudson River valley,
including Duchess, Orange and Ulster counties.

A lot of researchers are immediately drawn to the best performance metrics of the model—
in this case, likely our fantastic AUC statistic. However, remember that our data is severely
imbalanced, with only 1.5% of the training data representing shrublands. AUC is a measure of
how well your model performs at the “pairing test”—that is, it represents how well our model
would do at classifying two observations if one was guaranteed to represent shrubland and

3 14 11. Al for shrubland identification and mapping

one was guaranteed to not (Hand, 2009). In that situation, our model would give the right
results 89% of the time, which makes it a highly effective classifier. However, given that only
1.5% of our region is shrubland, the scenario described by AUC isn’t a great representation of
how our model actually performs on the ground.

More interesting are our model’s recall and precision scores. Our recall score—that is, the
proportion of actual “true” shrublands which the model calls shrubland—is extremely high
for this model. Our model produces very few false negative predictions. However, our
precision—the proportion of shrubland predictions which actually reflect “true” shrubland—
ismuch lower, as we have a very high number of false positives. Depending on our goals for this
model, this may be desirable; if our aim is to identify the majority of shrubland across the state, we
may accept these false positives as a necessary drawback of that goal. However, if our goal is to
produce the most accurate map of shrubland locations possible, for instance to try and choose
sites for fieldwork in shrubland regions, we might want a higher precision in exchange for a
lower recall value.

Because our model predicts the probability that an observation represents shrubland, and
not just the class, we can use different classification thresholds to balance recall and precision
according to our tastes. For instance, we can see a large increase in model precision if we re-
quire a predicted probability of more than 90% before we classify an observation as
shrubland:

test_predictions = pd.DataFrame(shrubland_model.predict(test_ds, verbose=0))
import statistics

statistics.mean(test_labels.loc[np.array(test_predictions[0] > 0.9)1)
0.2394189044714169

And an even bigger improvement if we require a probability of at least 95%:

statistics.mean(test_labels.loc[np.array(test_predictions[0] > 0.95)])
0.5160095263297169

Of course, this improved precision comes at the cost of a decrease in recall. This is a com-
mon trade-off with classification models: decreasing the number of false positives also de-
creases the number of true positives predicted by a given model. The appropriate
threshold to use when making predictions for any classifier will be dependent upon the rel-
ative costs of false negative and false positive predictions for your use case.

Perhaps more interesting than the specific probability predictions is the spatial arrange-
ment of predictions across our study area (Fig. 5). Generally speaking, it appears like our
model is expecting shrubland to be more dominant in areas along road networks and rivers
(which are white in the map, as they were excluded from our input data set)}—which makes a
lot of sense, as these are the areas more likely to have been recently impacted by humans. In
this way, mapping the results of a predictive model can help us to understand the patterns
and processes happening across the landscape, even without the use of an inferential or
causal framework. Being able to visualize what areas are more likely to be shrubland, in this
scenario, can help us generate hypotheses for why shrubland occurs where it does and per-
haps even suggest future areas for inferential investigation.

9 Open questions 315

7 Summary

This chapter provided a step-by-step walk through of the process for producing models of
arare land-cover class, using a case study attempting to identify shrublands across a region in
New York State. Due to the rarity of shrublands in this region, specific attention was paid to
how to model imbalanced classes and how to measure model performance with specific ob-
jectives for the model. While our model was better at identifying shrubland than random
chance alone (with a precision multiple times greater than the 1.5% “base rate” of all pixels
being shrubland), the rarity of this land cover class means that the model’s precision is rather
low in absolute terms. As higher predicted probabilities of shrubland are, as expected, more
likely to represent actual shrubland areas, adjusting the classification threshold to require
higher probabilities can help to improve model performance.

More generally, this chapter focused on the difficulties of modeling rare events, and ap-
proaches that can be used in this common situation. It is frequently true that rare events
and abnormalities are more scientifically interesting than the baseline case, and as such it
is important to be able to model and predict these situations. By being able to assign class
weights and thinking carefully about model performance metrics, we're able to apply most
modeling tools to this common type of problem.

8 Assignment

¢ Try altering the architecture of the neural network—remove layers, change the number of
nodes, alter the early stopping callback, and generally play with the form of the model. Can
you out-perform the model from the chapter?

e What happens if you use a different metric for early stopping? Can you optimize for a
different performance metric?

¢ What happens if you change the class weights to more strongly emphasize shrublands? To
de-emphasize them? What metrics are impacted the most?

9 Open questions

There remain some clear future directions for this model:

¢ Could additional predictors (derived from Landsat imagery or other remote sensing data
sources) improve predictive accuracy?

* Could this model be used to track the development of shrubland areas over time, in order
to monitor the abundance and distribution of this land cover type?

¢ Will the reported performance statistics remain stable as the model is used to extrapolate
into other regions of New York? Into other regions of the country?

* Could a similar approach be used to track other novel land cover classes, or a finer
gradation of land cover types than is usually modeled in LULC studies?

¢ Could more complex models, such as convolutional neural networks, achieve higher
accuracy against this data set?

316 11. Al for shrubland identification and mapping

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., et al., 2015. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. https:/ /www.tensorflow.org/.

Brown, J.F., Tollerud, H.J., Barber, C.P., Zhou, Q., Dwyer, J.L., Vogelmann,]J.E., Loveland, T.R., et al., 2020. Lessons
learned implementing an operational continuous United States National Land Change Monitoring Capability: the
land change monitoring, assessment, and projection (LCMAP) approach. Remote Sens. Environ. 238, 111356.
https://doi.org/10.1016/j.rse.2019.111356.

Carrera, E., Nowee, P., Kalinowski, S., 2021. Pydot. https:/ /github.com/pydot/pydot.

Chollet, F., 2015. Keras. https:/ /keras.io.

Cramer, V.A., Hobbs, R]., Standish, R.J., 2008. What’s new about old fields? Land abandonment and ecosystem as-
sembly. Trends Ecol. Evol. 23 (2), 104-112. https://doi.org/10.1016/j.tree.2007.10.005.

Falkowski, M.]., Evans,].S., Martinuzzi, S., Gessler, P.E., Hudak, A.T., 2009. Characterizing forest succession with
Lidar data: an evaluation for the Inland Northwest, USA. Remote Sens. Environ. 113 (5), 946-956. https:/ /doi.
org/10.1016/j.rse.2009.01.003.

Fargione, J.E., Bassett, S., Boucher, T., Bridgham, S.D., Conant, R.T., Cook-Patton, 5.C., Ellis, P.W., et al., 2018. Natural
climate solutions for the United States. Sci. Adv. 4 (11), eaat1869. https://doi.org/10.1126/sciadv.aat1869.

Foster, D.R., Motzkin, G., Slater, B., 1998. Land-use history as long-term broad-scale disturbance: regional forest dy-
namics in Central New England. Ecosystems 1 (1), 96-119. https://doi.org/10.1007/s100219900008.

Gillies, S., et al., 2013. Rasterio: Geospatial Raster I/O for Python Programmers. Mapbox. https://github.com/
rasterio/rasterio.

Hand, D.J., 2009. Measuring classifier performance: a coherent alternative to the area under the ROC curve. Mach.
Learn. 77, 103-123.

Harris, C.R., Jarrod Millman, K., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., et al., 2020.
Array programming with NumPy. Nature 585 (7825), 357-362. https:/ /doi.org/10.1038 /s41586-020-2649-2.
Hobbs, R.J., Higgs, E., Harris, J.A., 2009. Novel ecosystems: implications for conservation and restoration. Trends

Ecol. Evol. 24 (11), 599-605. https://doi.org/10.1016/j.tree.2009.05.012.

Hunter, J.D., 2007. Matplotlib: a 2d graphics environment. Comput. Sci. Eng. 9 (3), 90-95. https://doi.org/10.1109/
MCSE.2007.55.

Kennedy, R.E., Yang, Z., Cohen, W.B., 2010. Detecting trends in forest disturbance and recovery using yearly Landsat
time series. 1. Land Trendr temporal segmentation algorithms. Remote Sens. Environ. 114 (12), 2897-2910. https:/ /
doi.org/10.1016/j.rse.2010.07.008.

Kennedy, R.E., Yang, Z., Gorelick, N., Braaten, J., Cavalcante, L., Cohen, W.B., Healey, S., 2018. Implementation of the
LandTrendr algorithm on Google earth engine. Remote Sens. 10 (5). https://doi.org/10.3390/rs10050691.

King, D.I,, Schlossberg, S., 2014. Synthesis of the conservation value of the early-successional stage in forests of East-
ern North America. For. Ecol. Manag. 324, 186-195. https://doi.org/10.1016/j.foreco.2013.12.001.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436-444. https://doi.org/10.1038 /nature14539.

Mahoney, M.]., Johnson, L K., Guinan, A.Z., Beier, C.M., 2022a. Classification and mapping of low-statured shrubland
cover types in post-agricultural landscapes of the US Northeast. Int.]. Remote Sens. 43 (19-24), 7117-7138. https:/ /
doi.org/10.1080/01431161.2022.2155086.

Mahoney, M J., Johnson, L.K., Beier, C.M., 2022b. Data for: Al for Shrubland Identification and Mapping (in Al For
Earth Science). Zenodo, https://doi.org/10.5281/zenodo.6824173.

McKinney, W., 2010. Data structures for statistical computing in Python. In: van der Walt, S., Millman, J. (Eds.), Pro-
ceedings of the 9th Python in Science Conference, pp. 5661, https:/ /doi.org/10.25080 / Majora-92bf1922-00a.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., et al., 2011. Scikit-learn:
machine learning in Python. J. Mach. Learn. Res. 12, 2825-2830.

Python Core Team, 2022. Python: A Dynamic, Open Source Programming Language. Python Software Foundation.
https:/ /www.python.org/.

Ruiz, L.A., Recio, J.A., Crespo-Peremarch, P., Sapena, M., 2018. An object-based approach for mapping forest struc-
tural types based on low-density LIDAR and multispectral imagery. Geocarto Int. 33 (5), 443-457. https:/ /doi.
org/10.1080/10106049.2016.1265595.

The Pandas Development Team, 2020. Pandas-Dev/Pandas: Pandas (Version Latest). Zenodo, https://doi.org/
10.5281/zenodo.3509134.

Wickham, J., Stehman, S.V., Sorenson, D.G., Gass, L., Dewitz, J.A., 2021. Thematic accuracy assessment of the NLCD
2016 land cover for the conterminous United States. Remote Sens. Environ. 257, 112357. https://doi.org/10.1016/
j-rse.2021.112357.

https://www.tensorflow.org/
https://doi.org/10.1016/j.rse.2019.111356
https://github.com/pydot/pydot
https://keras.io/
https://doi.org/10.1016/j.tree.2007.10.005
https://doi.org/10.1016/j.rse.2009.01.003
https://doi.org/10.1016/j.rse.2009.01.003
https://doi.org/10.1126/sciadv.aat1869
https://doi.org/10.1007/s100219900008
https://github.com/rasterio/rasterio
https://github.com/rasterio/rasterio
http://refhub.elsevier.com/B978-0-323-91737-7.00010-4/rf0055
http://refhub.elsevier.com/B978-0-323-91737-7.00010-4/rf0055
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1016/j.tree.2009.05.012
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1016/j.rse.2010.07.008
https://doi.org/10.1016/j.rse.2010.07.008
https://doi.org/10.3390/rs10050691
https://doi.org/10.1016/j.foreco.2013.12.001
https://doi.org/10.1038/nature14539
https://doi.org/10.1080/01431161.2022.2155086
https://doi.org/10.1080/01431161.2022.2155086
https://doi.org/10.5281/zenodo.6824173
https://doi.org/10.25080/Majora-92bf1922-00a
http://refhub.elsevier.com/B978-0-323-91737-7.00010-4/rf0110
http://refhub.elsevier.com/B978-0-323-91737-7.00010-4/rf0110
https://www.python.org/
https://doi.org/10.1080/10106049.2016.1265595
https://doi.org/10.1080/10106049.2016.1265595
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.1016/j.rse.2021.112357
https://doi.org/10.1016/j.rse.2021.112357

	AI for shrubland identification and mapping
	Introduction
	What youll learn
	Background
	Prerequisites
	Model building
	Preprocessing
	Model fitting
	Model evaluation

	Discussion
	Summary
	Assignment
	Open questions
	References

