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A B S T R A C T

Estimating forest aboveground biomass (AGB) at large scales and fine spatial resolutions has become
increasingly important for greenhouse gas accounting, monitoring, and verification efforts to mitigate climate
change. Airborne LiDAR is highly valuable for modeling attributes of forest structure including AGB, yet most
LiDAR collections take place at local or regional scales covering irregular, non-contiguous footprints, resulting
in a patchwork of different landscape segments at various points in time. Here, as part of a statewide forest
carbon assessment for New York State (USA), we addressed common obstacles in leveraging a LiDAR patchwork
for AGB mapping at landscape scales, including selection of training data, the investigation of regional or
coverage specific patterns in prediction error, and map agreement with field inventory across multiple scales.

Three machine learning algorithms and an ensemble model were trained with Forest Inventory and
Analysis (FIA) field measurements, airborne LiDAR, and topographic, climatic, and cadastral geodata. Using
a novel set of plot selection criteria and growth adjustments to temporally align LiDAR coverages with FIA
measurements, 801 FIA plots were selected with co-located point clouds drawn from a patchwork of 17 leaf-
off LiDAR coverages (2014–2019). Our ensemble model was used to produce 30 m AGB prediction surfaces
within a predictor-defined area of applicability (98% of LiDAR coverage) and within four vegetated landcover
classes. The resulting AGB maps were compared with FIA plot-level and areal estimates at multiple scales
of aggregation. Our model was overall accurate (% root mean squared error 22%–45%; mean absolute error
11.6–29.4 Mg ha-1; mean error 2.4–6.3 Mg ha-1), explained 73%–80% of field-observed variation, and yielded
estimates that were largely consistent with FIA’s design-based estimates (89% of estimates within FIA’s 95%
confidence interval). We share practical solutions to challenges faced in using spatiotemporal patchworks of
LiDAR to meet growing needs for AGB prediction and mapping in support of broad-scale applications in forest
carbon accounting and ecosystem stewardship.
1. Introduction

Mapping and monitoring forest aboveground biomass (AGB) has
become increasingly important as the basis for large-scale accounting
of carbon and greenhouse gas (GHG) fluxes in support of policy,
regulatory, and land stewardship initiatives to mitigate global climate
change. Although carbon stocks are the ultimate endpoint in GHG
accounting, for several practical reasons forest AGB serves as a proxy
for carbon stocks (and stock-changes) in large-scale accounting method-
ologies (Buendia et al., 2019; Woodall et al., 2015). Such applications,
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based primarily on field inventory, yield aggregate tabular estimates
for political units (e.g., states, provinces), but offer little insights on
landscape patterns within and across those units. Landscape-scale AGB
maps with fine-resolutions can serve as inputs to GHG accounting and
can help decision makers identify specific units of land for protection
from deforestation, or as suitable candidates for reforestation, afforesta-
tion, or improved management in efforts to increase terrestrial carbon
sequestration and offset GHG emissions from other sectors (Houghton
et al., 2012; Houghton, 2005).
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National field sampling programs, like the United States Department
of Agriculture’s Forest Inventory and Analysis program (FIA) (Gray
et al., 2012), provide estimates of AGB at individual plots and are
scaled to larger areas through a design-based approach (Bechtold and
Patterson, 2005). However, the resolution at which design-based es-
timates can be reliably produced is limited to relatively coarse units,
such as states or counties, due to the density of the sample (McRoberts,
2011). For instance, the FIA program samples forest conditions and
land cover across New York State (NYS) at a density of roughly one
plot per 2,400 ha (Gray et al., 2012), while 65% of NY forestlands
are owned in parcels smaller than 40 ha (L’Roe and Allred, 2013).
Although FIA’s extensive plot network was never designed to yield
such localized results, this inherent resolution mismatch poses obstacles
to accounting and decision-support applications that must account for
local geography, both ecological and cadastral, to be practical and
effective.

To address this need, model-based approaches combining field in-
ventory data, like the FIA, with auxiliary remotely sensed data can
produce predictions for all map units (pixels) in a given area. Airborne
LiDAR has been established as a highly valuable remotely sensed data
source for such purposes (Huang et al., 2019; Hurtt et al., 2019;
Chen and McRoberts, 2016) offering detailed information on forest
structure at fine spatial resolutions. However, LiDAR data are most
commonly acquired at local to regional scales in irregular or non-
contiguous footprints (Skowronski and Lister, 2012), resulting in a
complex patchwork of data from component coverages acquired at
different times with different sensors and mission parameters, in turn
posing a host of challenges for broad-scale AGB mapping (Lu et al.,
2014; Huang et al., 2019). These challenges include insufficient field
inventory plots that spatially and temporally match LiDAR acquisitions
and data discrepancies among LiDAR coverages.

Yet several groups have undertaken broad-scale AGB mapping ef-
forts with LiDAR patchworks with varying degrees to which training
data have been pooled from multiple LiDAR coverages. The choice
between an individual or a pooled modeling approach often reflects
practical considerations relating to sufficient sample size across all
sub-regions and the cost of developing multiple models. Nilsson et al.
(2017) did not pool at all, implementing a separate model trained for
each coverage. Huang et al. (2019) pooled by ecoregion. Both Ayrey
et al. (2021) and Hauglin et al. (2021) pooled all coverages but used a
convolutional neural network and a mixed-effects model respectively,
with differing protocols for inventory plot selection.

In this study, as part of a broader effort for map-based forest car-
bon accounting across NYS, we addressed several common challenges
in using LiDAR patchworks for broad-scale, fine-resolution biomass
modeling and mapping. We leveraged FIA inventories for model train-
ing and assessment data, and implemented FIA-developed methods to
assess the agreement between our estimates and those produced by
FIA. With the goal of producing a spatially explicit representation of
FIA AGB information, we used a model-based approach to translate
FIA’s discrete plot-level estimates to wall-to-wall predictions at a 30 m
resolution across a patchwork of 17 discrete LiDAR coverages in NYS.

We implemented a rigorous plot selection framework to limit tem-
poral lags between LiDAR acquisitions and field inventories. When
strict temporal alignment yielded too few plots, we leveraged repeated
FIA inventories to boost the number of plots that temporally match
LiDAR acquisitions without the incorporation of additional models or
manual processes (Ayrey et al., 2021; Hauglin et al., 2021). In spite
of this strategy, we were left with limited model training data, where
some coverages and regions lacked sufficient information to support
independent models, necessitating a single model or pooled approach.

We used machine learning (ML) algorithms including random forests
(Breiman, 2001a), gradient boosting machines (Friedman, 2002), and
support vector machines (Cortes and Vapnik, 1995), as well as ‘stacked
ensembles’ of said algorithms (Wolpert, 1992). These have been shown
2

to be better suited for pure prediction (Efron, 2020; Breiman, 2001b)
when compared to their conventional regression counterparts (Hauglin
et al., 2021), especially when the input data are noisy and the pro-
cesses governing the relationships between predictors and responses
are complex or unknown, as is often the case in nature (Dormann
et al., 2018). Furthermore, using pre-selected hyperparameters these
algorithms can be trained in minutes with typical consumer-grade
hardware, avoiding some of the drawbacks of computationally intense
deep-learning approaches (Ayrey et al., 2021).

We also employed multiple strategies to address concerns that
differences among sensors and mission parameters could lead to non-
randomly distributed errors in our AGB prediction surfaces. First, we
produced an area of applicability (Meyer and Pebesma, 2021) mask
to both examine the uniformity of our predictors across the compo-
nent coverages, as well as to screen predictions based on anomalous
predictor data. Second, we examined the spatial autocorrelation of our
residuals and mapped our prediction error to identify the presence of
region or coverage specific patterns. Finally, we assessed the agreement
between our mapped predictions and FIA estimates across a range of
scales (Riemann et al., 2010; Menlove and Healey, 2020).

2. Data and methods

2.1. LiDAR coverages

Our study relied upon a set of 17 LiDAR datasets hosted by the
NYS GIS Program Office (GPO) covering 62.46% (7,835,773 ha) of NYS
(hereafter ‘‘GPO-LiDAR area’’; Table 1; Fig. 1). We selected individual
coverages from the most recent five years of available data that con-
tained temporally matching field data (2014–2019) to minimize sensor
and data differences. All component coverages were originally collected
to generate digital elevation models for flood risk analysis, and to this
end were flown during leaf-off conditions. Several previous studies have
shown that leaf-off LiDAR models can be as accurate as their leaf-on
counterparts (Hawbaker et al., 2010; White et al., 2015; Anderson and
Bolstad, 2013). Further specifications for each LiDAR coverage can be
found in Supplementary Materials S1.

2.2. Field data

Two field datasets were compiled from the USDA FIA inventory
in NYS with the distinct purposes of model development and map
assessment. The FIA program compiled AGB estimates for trees ≥
12.7 cm (5 in) diameter at breast height (Gray et al., 2012), and were
converted to units of megagrams per hectare (Mg ha-1). The FIA uses
permanent inventory plots arranged in a quasi-systematic hexagonal
grid that are remeasured on a rolling 5–7 year basis in the Northeastern
United States (Bechtold and Patterson, 2005). Tree measurements, and
subsequently AGB estimates, are only recorded on portions of plots
considered forested. For an area to be considered forested by the FIA,
the area must be at least 10% stocked with trees, at least 0.4 ha (1
acre) in size, and at least 36.58 m (120 ft) wide. Additionally, any lands
meeting these minimum requirements, but developed for nonforest land
uses, are not considered forested. With an understanding that some
nonforest conditions contained AGB that was not measured by FIA, we
assumed that any nonforest condition contained 0 AGB.

FIA plots are composed of four identical circular subplots with radii
of 7.32 m (24 ft), with one subplot centered at the macroplot centroid
and three subplots located 36.6 m (120 ft) away at azimuths of 360◦,
120◦, and 240◦ (Bechtold and Patterson, 2005). The plot locations
were provided by the FIA program in the form of average coordinates,
collected over multiple repeat visits, representing the centroid of the
center subplot, which we then used to build a polygon dataset rep-
resenting the entire plot layout including all four subplots (Fig. 2).
Averaged coordinates were necessary due to the lack of precision of
initial GPS coordinates for the macroplot centroids (Hoppus and Lister,
2005). Any reference to an FIA plot hereafter implies the aggregation

of all four component subplots.
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Table 1
Component LiDAR coverage metadata. IDs for cross figure correspondence; Year of acquisition; Area covered (ha); Pulse density (PD) in pulses per
m2; Number of FIA plots in model and map assessment datasets. Area of Applicability (AOA) in percent of LiDAR coverage pixels considered
inside of the area of applicability. AOA computation conducted after initial Land Change Monitoring, Assessment, and Projection (LCMAP)
primary classification masking.

ID Coverage name Year Area PD % AOA Model Assessment

1 Erie, Genesee & Livingston 2019 555,853 2.04 97.72 11 33
2 Fulton, Saratoga, Herkimer & Franklin 2018 557,421 2.60 99.61 39 84
3 Southwest B 2018 527,075 1.98 98.06 28 66
4 Cayuga & Oswego 2018 438,201 2.78 96.89 25 43
5 Southwest 2017 423,714 1.98 98.53 33 74
6 Franklin & St. Lawrence 2017 977,620 2.69 99.24 104 188
7 Oneida Subbasin 2017 264,886 2.10 96.02 15 31
8 Allegany & Steuben 2016 309,081 1.69 97.77 32 53
9 Columbia & Rensselaer 2016 248,839 1.69 98.19 17 28
10 Clinton, Essex & Franklin 2015 600,755 2.23 98.70 115 127
11 Warren, Washington & Essex 2015 611,704 3.24 99.37 106 128
12 Madison & Otsego 2015 471,564 2.13 99.24 56 92
13 3 County 2014 755,629 2.04 96.12 92 114
14 Long Island 2014 315,542 2.04 94.77 22 12
15 Schoharie 2014 256,464 2.04 95.12 31 40
16 New York City (NYC) 2014 77,211 1.54 90.40 2 1
17 Great Lakes 2014 444,215 2.04 98.47 73 103

GPO-LiDAR 7,835,773 98.12 801 1217
Fig. 1. GPO-LiDAR component coverages, colored by year of acquisition and labeled by ID numbers in Table 1.
.2.1. Model development dataset
In selecting plots for model development (model dataset hereafter;

able 1) we aimed to maximize the number of reference plots (Fass-
acht et al., 2014), while minimizing the temporal lag between LiDAR
3

cquisitions and inventories and ensuring high quality co-registered
LiDAR data (White et al., 2013; CEOS, 2021). Temporal misalignment
between plots and LiDAR has been shown to introduce error in model
predictions; Gonçalves et al. (2017) found that 7%–17% of their pre-
diction error could be attributed to 3-year lags between inventories and
LiDAR acquisitions.
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Table 2
Summary of plot selection criteria for the model dataset.

Criteria Description Num plots

Include
1 Plots inventoried in the same

year as a LiDAR acquisition.
324

2 Plots growth-adjusted to
temporally align with LiDAR
acquisition.

843

Exclude

3 Plots where measured AGB = 0
Mg ha−1 but maximum LiDAR
return > 1 m.

327

4 Plots where the convex hull of
LiDAR returns clipped to a given
subplot did not contain at least
90% of the subplot area.

13

5 Plots duplicated in neighboring
coverages. Temporal matches
given preference, followed by
inventory recency.

26
We only considered FIA plots when all subplots were marked as
easured and when forest conditions were uniform at the plot level

all subplots completely forested or completely nonforested). Only 324
lots were available when we required a strict temporal match between
nventories and LiDAR acquisitions (Table 2; Criterion 1). To increase
he number of reference plots, we applied a growth adjustment to FIA
lots with inventories both before and after the LiDAR acquisition,
r ‘bracketing inventories’. For plots with bracketing inventories, we
xcluded those where AGB decreased by ≥ 5% between measurements

indicating a disturbance event on the plot. For the remaining (relatively
undisturbed) plots with bracketing inventories, AGB at the time of the
LiDAR collection was then estimated by linearly interpolating between
bracketing FIA estimates. This procedure added 843 plots to our dataset
(Table 2; Criterion 2), and is analogous to existing growth adjustment
methods (Gonçalves et al., 2017; Gobakken and Næsset, 2008).

Several plot exclusion rules were implemented to filter duplicates
and remove problematic observations resulting from vegetation in non-
forest conditions, interfering structures, or other data anomalies which
would otherwise degrade the relationships between AGB and our pre-
dictor variables (Table 2; Criteria 3–5). Point clouds were clipped to the
constructed plot polygons and were excluded with criteria 3–5 (Fig. 2).

2.2.2. Map assessment dataset
For our map assessment dataset (assessment dataset hereafter; Ta-

ble 1) we were primarily concerned with maintaining FIA’s probability
sample of inventory plots in order to leverage unbiased estimators of
map agreement metrics (Stehman and Foody, 2019; Riemann et al.,
2010). As in the model dataset, only those plots with all four subplots
marked as measured were considered. Excluding non-measured plots,
however, does not invalidate FIA’s probability sample, as the FIA
program assumes these plots to be randomly distributed across the
landscape (Bechtold and Patterson, 2005). To this end, we selected FIA
plots on a coverage-by-coverage basis (Fig. 1), choosing only plots that
had been inventoried in +∕− 2 years from the year of the LiDAR acqui-
sition, but not inventoried in the same year as the LiDAR acquisition to
maintain independence from the model dataset (Table 3; Criterion 1).
Where plots were shared with the model dataset, AGB values differed,
with AGB values derived from measurements in the map assessment
dataset, and AGB values derived from our growth-adjustment process
in the model dataset, therefore representing different points in time.
Furthermore, plots falling outside of our mapped area, based on our
landcover and area-of-applicability masks (Section 2.6), were excluded
as they were considered outside our population of interest (Table 3;
4

Criteria 2–3).
Table 3
Summary of plot selection criteria for the assessment dataset.

Criteria Description Num plots

Include 1 Plots inventoried in +∕− 2 years
of LiDAR acquisition but not in
the same year as the acquisition.

1639

Exclude

2 Plots with any portion of the plot
footprint outside of our landcover
mask.

291

3 Plots with any portion of the plot
footprint outside of our area of
applicability mask.

131

2.3. LiDAR and auxiliary data pre-processing

First, we height-normalized the raw LiDAR data using digital terrain
models (DTM) computed from each LiDAR coverage separately, where
each DTM was computed on the fly, such that an elevation value
was imputed for each point in the raw LiDAR point cloud, and a
complete DTM surface was never created or saved. The point-wise
elevations were estimated using an inverse-distance-weighted imputa-
tion using pre-classified ground and water returns with five neighbors
and a power of two. From the height-normalized data we computed
40 predictors (Supplementary Materials S2) based on previous stud-
ies (Hawbaker et al., 2010; Huang et al., 2019; Pflugmacher et al.,
2014). Predictors at individual FIA plots were computed from LiDAR
returns clipped to only the measured subplot areas and then pooled
at the plot level (Fig. 2). The corresponding predictors computed for
map pixels were based on the set of returns within each 30 m cell.
The lidR (Roussel and Auty, 2020; Roussel et al., 2020) package in
R (R Core Team, 2021) was used for height-normalization and predictor
generation.

A group of steady-state predictors was included to represent geospa-
tial variation in climate and topography (Kennedy et al., 2018). Addi-
tionally, a 2019 tax parcel layer was incorporated as a set of boolean
indicator variables (Supplementary Materials S3). Tax codes and cat-
egories provide cadastral information related to land-use and manage-
ment (Thompson et al., 2011). All auxiliary predictors were reprojected
and resampled to pixel geometries matching the 30 m LiDAR predictor
surfaces.

2.4. Model development

Three ML models were fit to a randomly selected 80% of the
model dataset (training set; n = 630), leaving the 20% remaining plots
as an independent testing set to assess the final model performance
on point clouds clipped to FIA plot polygons (testing set; n = 171).

All predictors described in Section 2.3 were included in the model
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Fig. 2. (a) FIA plot layout overlaid on a 1 m LiDAR-derived max-height surface. (b)
Height-normalized LiDAR returns clipped to individual FIA subplots and pooled prior
to predictor computation.

training process without applying any dimensionality reduction proce-
dures, and the following ML models with respective R packages were
used: Random forest (RF), ranger package (Wright and Ziegler, 2017),
stochastic gradient boosting machines (GBM), lightgbm package (Ke
et al., 2021, 2017), and support vector machines (SVM), kernlab pack-
age (Karatzoglou et al., 2004). Each of the models were tuned using
the 80% training dataset and an iterative grid search, starting by
testing wide ranges of hyperparameters using five-fold cross validation
and then narrowing down to only the most performant combinations
over several iterations. Models then used the most accurate sets of
hyperparameters in all other analyses. For each of the 𝑛 observation
in the training dataset, all three component models were fit, using
5

their optimal hyperparameters, with 𝑛−1 observations. Predictions for
each component model were made for the 𝑛th (left out) observation.
A linear regression model was used to estimate AGB as a function of
these leave-one-out predictions, combining the three ML models in a
stacked ensemble to better reflect model selection uncertainty (Wintle
et al., 2003; Dormann et al., 2018), and to reduce the generalization
error of our component models (Wolpert, 1992). The linear regression
ensemble was constructed as follows:
AGB = 𝛽0 + 𝛽1 ⋅ 𝑅𝐹 + 𝛽2 ⋅ 𝐿𝐺𝐵 + 𝛽3 ⋅ 𝑆𝑉𝑀 + 𝛽4 ⋅ 𝑅𝐹 ⋅ 𝐿𝐺𝐵

+𝛽5 ⋅ 𝑅𝐹 ⋅ 𝑆𝑉𝑀 + 𝛽6 ⋅ 𝐿𝐺𝐵 ⋅ 𝑆𝑉𝑀 + 𝛽7 ⋅ 𝑅𝐹 ⋅ 𝐿𝐺𝐵 ⋅ 𝑆𝑉𝑀
(1)

where 𝛽∗ are coefficients estimated through ordinary least squares
regression, and 𝑅𝐹 , 𝐺𝐵𝑀 , and 𝑆𝑉𝑀 are the respective component
model predictions. The selected hyperparameters for each component
model and the coefficients in the linear regression ensemble are avail-
able in Supplementary Materials S4.

2.5. Model performance

Model performance was assessed against the 20% testing partition
of the model dataset (Table 1) based on metrics including root-mean-
squared error in Mg ha-1 (RMSE, Eq. (2)), percent RMSE (% RMSE,
Eq. (3)), mean absolute error in Mg ha-1 (MAE, Eq. (4)), percent MAE
(% MAE, Eq. (5)), mean error in Mg ha-1 (ME, Eq. (6)), and the
coefficient of determination (𝑅2, Eq. (7)) as follows:

RMSE =

√

√

√

√(1
𝑛
)

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (2)

% RMSE = 100 ⋅
RMSE

�̄�
(3)

MAE = (1
𝑛
)

𝑛
∑

𝑖=1
(|𝑦𝑖 − 𝑦𝑖|) (4)

% MAE = 100 ⋅
MAE
�̄�

(5)

ME = (1
𝑛
)

𝑛
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖) (6)

R2 = 1 −
∑𝑛

𝑖=1
(

𝑦𝑖 − �̂�𝑖
)2

∑𝑛
𝑖=1

(

𝑦𝑖 − �̄�
)2 (7)

where 𝑛 is the number of FIA plots included in the data set, 𝑦𝑖 is the pre-
dicted value of AGB, 𝑦𝑖 the AGB value measured at the corresponding
location, and �̄� the mean AGB value from FIA field measurements.

Standard errors for R2 and RMSE were computed as follows:

SEboot =
√

𝑉 𝑎𝑟𝑏𝑜𝑜𝑡
𝑛

(8)

where 𝑛 is the number of FIA plots included in the dataset, and 𝑉 𝑎𝑟𝑏𝑜𝑜𝑡
is computed as the variance of R2 and RMSE estimates for 1000
iterations of bootstrap resampling. Standard errors for MAE and ME
were computed as follows:

SE =

√

∑𝑛
𝑖=1

(

𝑒𝑖 − 𝑒
)2

𝑛 − 1 (9)

where 𝑒𝑖 is the error at an FIA plot, and 𝑒 is the mean error from all
FIA plots included. In the case of MAE, 𝑒𝑖 = |𝑦𝑖 − 𝑦𝑖|, the absolute value
of the error at a given FIA plot.

2.6. AGB mapping and post-processing

The linear model ensemble was used to make predictions for all
30 m pixels within the GPO-LiDAR area. Predictions on newer cov-
erages superseded those based on older coverages in areas where
neighboring LiDAR coverages overlapped. All AGB prediction surfaces



International Journal of Applied Earth Observation and Geoinformation 114 (2022) 103059L.K. Johnson et al.
were projected to match Landsat 30 m pixel geometries to avoid mixed
pixel effects in subsequent raster overlay analyses (Wulder et al., 2022).

With recognition that our predictions are best suited to areas popu-
lated by woody biomass, we tabulated our predictions across landcover
types determined from the United States Geological Survey’s Land
Change Monitoring, Assessment, and Projection (LCMAP) primary clas-
sification products (Brown et al., 2020; Zhu and Woodcock, 2014),
which has a reported overall accuracy of 77.4% in the eastern United
States for the years 1985–2018 (Pengra et al., 2020). LCMAP’s annual
resolution (1985–2019) allowed for temporal alignment with the patch-
work of LiDAR-AGB surfaces, and shared identical pixel geometries. We
masked our AGB prediction surfaces to remove Developed, Water, and
Barren pixels, and then tabulated AGB by the four remaining vegetated
LCMAP classes of Tree cover, Grass/Shrub, Cropland, and Wetland.

Lastly, we computed an area of applicability (AOA) surface as a
final mask for our AGB prediction surfaces (Meyer and Pebesma, 2021;
Supplementary Materials S5). This algorithm calculates distance in
predictor space, using the full set of predictors available to our com-
ponent ML models (Section 2.3), to identify pixels containing predictor
data that are not sufficiently well-represented in the training data. We
used this mask to remove pixels falling outside of our AOA, and thus
restricted our maps to only areas where we can expect our models to
perform similarly to training and test set performance.

2.7. Map agreement assessment

We assessed the agreement between our AGB maps and FIA refer-
ence data following approaches prescribed by Riemann et al. (2010)
and Menlove and Healey (2020). The former evaluated agreement
across a range of scales and accounts for the mismatch in spatial
support between map aggregate estimates (many pixels) and FIA ag-
gregate estimates (few plots) by only extracting pixels coincident with
FIA plots. The latter compared FIA-derived AGB estimates — which
have been adjusted for forest cover within, and area-extrapolated to,
hexagon map units — to zonal averages of our mapped AGB.

Following Riemann et al. (2010) we compared our AGB prediction
surfaces to the assessment dataset (Section 2.2). Comparisons were
made at both the plot-to-pixel scale and within variably-sized hexagons
with distances between centroids ranging from 10 km (8660 ha) to 100
km (866,025 ha). As an extension of the Riemann et al. (2010) method-
ology we assessed prediction error (RMSE, MAE, ME) with choropleth
maps that summarized the mapped residuals and FIA reference data dis-
tributions within hexagon units with centroids spaced 50 km apart. We
also grouped plot to pixel results by the majority LCMAP classification
at each plot, to demonstrate the level of agreement across vegetated
landcover classes. To evaluate the presence of spatial autocorrelation
among mapped residuals, which could indicate the presence of regional
or coverage specific error in our model’s predictions, Global Moran’s I
statistics were computed for search radii ranging from 1 to 50 km using
both the model dataset and the assessment dataset separately (Moran,
1950).

Following the Menlove and Healey (2020) approach we compared
the average of our masked predictions, weighted by the proportion
of each pixel intersecting a given hexagon, to a set of FIA-derived
estimates for 64,000 ha hexagons representing FIA’s finest acceptable
scale for the most recent inventory cycle in NYS (2013–2019) (Menlove
and Healey, 2020). As recommended by Menlove and Healey (2020),
we accounted for differences in forest definitions between the FIA
estimates and our mapped estimates by dividing FIA estimates by
the total area of vegetated (based on LCMAP Tree cover, Wetland,
Cropland, Grass/Shrub) pixels within each hexagon. Lastly, we limited
this comparison to only those hexagons that contained > 10% mapped
area, using the summed area of all pixels inside of our LCMAP and AOA
mask (Section 2.6) to define mapped area within each hexagon.

The exactextractr (Baston, 2021), spdep (Bivand et al., 2013),
sf (Pebesma, 2018), raster (Hijmans, 2021), and terra (Hijmans, 2022)
packages in R (R Core Team, 2021) were used to conduct all analyses
described here. Further description of this assessment is included in
6

Supplementary Materials S6.
Table 4
Model performance metrics (as defined in Section 2.5) against 20% testing partition of
the model dataset (n = 171). RMSE, MAE, and ME in Mgha−1.

RF GBM SVM Ensemble

RMSE 40.55 41.02 41.63 41.07
% RMSE 37.34 37.78 38.34 37.82
MAE 29.08 29.68 29.27 29.36
ME 3.14 1.05 −1.90 3.10
R2 0.75 0.74 0.73 0.74

3. Results

3.1. Growth-adjusted field plots

Of the 801 FIA plots in our model dataset, 562 were growth-
adjusted, representing about 70% of the full dataset. The average
annual AGB increment applied to all growth-adjusted plots was 1.84
Mg ha-1 year-1 over an average of 3.96 years. The largest annual AGB
increment applied was 11.17 Mg ha-1 year-1 over 3 years. The longest
adjustments (applied to 5 plots) occurred over 10 years at an average
annual increment of 2.63 Mg ha-1 year-1.

3.2. Model performance

The three component ML models and the ensemble model were
generally accurate against the 20% test partition of the model dataset
(Table 4), but were more accurate towards the mean of the reference
distribution (Fig. 3). This resulted in slight overpredictions at smaller
AGB plots and underpredictions at larger AGB plots (Fig. 3). While
there were only marginal differences between the model performance
metrics, and RF and GBM yielded slightly smaller RMSE values than
the ensemble model (Table 4), we selected the ensemble model for
mapping and all further analysis based on first principles described in
Section 2.4, and its improved ability to make predictions towards the
extremes of the reference distribution relative to any single component
model.

3.3. AGB by landcover class

Approximately 62% of all pixels, accounting for 87% of the to-
tal mapped AGB (Fig. 4), were contained within areas identified as
Tree cover by Land Change Monitoring, Assessment, and Projection
(LCMAP) primary classification products (Table 5). All other LCMAP
classes contained comparatively small, but non-zero estimates of AGB,
with Wetlands and Grass/Shrub containing larger average predictions
within small portions of the mapped area, and Cropland containing
smaller average predictions across a larger proportion of the mapped
area (Table 5).

3.4. Area of applicability

All mapped (vegetated) LCMAP classes contained AOA ≥ 97.64%
and the AOA breakdown across component LiDAR coverages (after
LCMAP masking) was uniform (≥ 90.4%) with NYC and Long Island
the only two coverages with ≤ 95% AOA (Tables 1 and 5). In total,
98.12% of the GPO-LiDAR area was considered inside the AOA after
initial LCMAP masking.

3.5. Map agreement assessment

We observed improved agreement between the mapped estimates
and the FIA estimates as the aggregation unit size increased, with %
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Fig. 3. Measured vs predicted AGB scatter plot for the 20% testing portion of the model dataset. AGB values in Mg ha−1. Geometric mean functional relationship (GMFR) trend
line shown with dashed (orange) line, and 1:1 line shown with solid (red) line.
Table 5
Summary of FIA reference plots in the model dataset and mapped predictions by LCMAP landcover classes. n = number of plots. Mean AGB
values in Mg ha−1. Total AGB values in millions of metric tons. Area in hectares. AOA expressed as percent of LCMAP classified pixels considered
inside of the area of applicability.

LCMAP Reference plots Mapped

n Mean AGB Area % Area Mean AGB Total AGB % AGB % AOA

Tree cover 599 137.97 4,251,812 62.42 132.66 564.06 87.38 98.13
Cropland 132 1.98 1,748,905 25.68 14.11 24.67 3.82 98.25
Wetland 36 115.13 613,578 9.01 77.22 47.38 7.34 97.64
Grass/Shrub 12 30.68 196,852 2.89 47.86 9.42 1.46 98.17
RMSE decreasing from 45 to 15% and MAE decreasing from 28 to 10
Mg ha-1 (Table 6, Figs. 5 and 6). The scatter plot results (Fig. 5) for the
plot to pixel and 10 km scales show a pattern of large overpredictions
where FIA reference values are 0 Mg ha-1 AGB — likely an indication
of the structural zeroes introduced by FIA’s strict definition of forest.
Notably, ME increased as a function of aggregation unit size, which
appears to be a reflection of outlier hexagons with very small samples
7

rather than any additive effects from aggregation (Supplementary Ma-
terials S6). We again observed less accurate predictions at the extremes
of the distributions across most scales, though our extreme predictions
(small and large) became more accurate as a function of aggregation
unit size, as indicated by the geometric mean functional relationship
(GMFR; Riemann et al., 2010) slope approaching 1 at the largest scales
(Figs. 5 and 6).
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Fig. 4. AGB prediction surfaces reflecting a temporal patchwork of conditions across the 17 component LiDAR coverages in the GPO-LiDAR area with New York State (USA).
The model’s mapped residuals grouped to 50 km spaced hexagons
did not reveal any observable spatial patterns of prediction error
(RMSE, MAE, ME) (Fig. 7). The ME map (Fig. 7c) was dominated
by near-zero positive prediction error but indicated the tendency for
hexagons with negative prediction ME to have larger mean FIA AGB
values, while hexagons with positive ME were more likely to have
smaller mean FIA AGB values (Fig. 7g). The RMSE map (Fig. 7a) and
MAE map (Fig. 7b) largely mirrored one another.

Comparison of our AGB maps with FIA’s design based estimates
of AGB density (Menlove and Healey, 2020) indicated overall strong
agreement, with 89% of our estimates falling within the FIA estimate
95% confidence intervals (CI) (Fig. 8). The majority of our estimates
falling outside the CI were at the lower range of the AGB distribution,
reinforcing the observed pattern of overprediction in comparison to
FIA-derived estimates at the low end of the reference distribution.

Map agreement across LCMAP vegetated classes was highly vari-
able, with the smallest % RMSE for plots classified as Tree cover by
LCMAP (Table 7). Absolute RMSE for Grass/Shrub and Cropland plots
was small (< 24 Mg ha-1), but their relative values were quite large
(% RMSE > 100%), reflecting the small FIA AGB averages within
these classes. Mean errors were positive and large for Grass/Shrub and
Croplands (14.64 Mg ha-1 and 6.67 Mg ha-1 respectively; Table 7),
suggesting that errors contained in these two landcover classes had a
relatively large contribution to the overall patterns of positive ME and
overprediction on the low end of the FIA AGB distribution across the
entire GPO-LiDAR area.

The global Moran’s I analysis with the assessment dataset found
evidence of very weak spatial autocorrelation (≤ 0.10) in mapped
8

residuals for all search radii (Supplementary Materials S7). Notably,
when the analysis was conducted with the model dataset, similarly
very weak spatial autocorrelation (≤ 0.08) was only evident for search
radii of 9 km to 14 km, but was not evident at any other scales
(Supplementary Materials S7).

4. Discussion

In this study we attempted to use a patchwork of 17 discrete
LiDAR coverages for broad-scale, fine-resolution forest aboveground
biomass (AGB) mapping across New York State (NYS), USA. Faced
with a limited sample of temporally aligned field inventory data, we
leveraged repeated inventories to boost the model training sample,
and used a machine learning ensemble model to produce accurate
predictions. We addressed concerns of sensor and mission discrepancies
among component LiDAR coverages by investigating spatial patterns of
prediction error, and by using an AOA mask to both show predictor
uniformity across coverages, as well as to mask predictions based on
anomalous data. Our results demonstrated that our maps accurately
characterized the spatial patterns of AGB across the state, and showed
that our predictions have strong agreement with FIA estimates across
a range of aggregation scales.

4.1. Growth-adjusted field plots

Our approach to solve the common lack of temporally coincident
LiDAR and field data was parsimonious and effectively tripled the
sample size while achieving accurate modeling results. We did this by
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Table 6
Map agreement results for select scales. Distance = distance between hexagon centroids in km; PPH = plots per hexagon; n = number of
comparison units (plots or hexagons); RMSE, MAE, ME in Mg ha−1. All accuracy metrics as defined in Section 2.5. Standard errors in parentheses.

Distance n PPH % RMSE RMSE MAE ME R2

plot:pixel 1217 – 44.87 40.93 (0.04) 28.12 (0.85) 4.40 (1.17) 0.73 (0.01)
10 739 1.65 37.95 34.06 (0.05) 23.95 (0.89) 4.63 (1.24) 0.77 (0.01)
25 199 6.12 27.95 24.68 (0.13) 17.13 (1.26) 2.36 (1.75) 0.80 (0.01)
50 72 16.90 25.86 21.17 (0.41) 14.26 (1.86) 6.26 (2.40) 0.78 (0.01)

100 26 46.81 22.28 17.39 (0.71) 11.58 (2.59) 5.42 (3.30) 0.74 (0.03)
Fig. 5. Comparing mapped AGB to FIA estimated AGB across selected scales represented by distances between hexagon centroids (plot:pixel, 10 km, 25 km, and 50 km). AGB
values in Mg ha−1. GMFR trend line shown with dashed (orange) line, and 1:1 line shown with solid (red) line.
Table 7
Map agreement at the plot to pixel scale, grouped by LCMAP classification. n = number of plots; RMSE, MAE, ME in Mg ha−1. All accuracy
metrics as defined in Section 2.5. Standard errors in parentheses, with a minimum of 0.01 for display.

LCMAP n % RMSE RMSE MAE ME R2

Tree cover 797 36.35 45.85 (2.56) 34.42 (1.07) 3.83 (1.62) 0.55 (0.01)
Cropland 303 229.82 18.90 (2.40) 10.32 (0.91) 6.67 (1.02) 0.40 (0.03)
Wetland 91 62.48 51.36 (30.77) 35.56 (3.91) −1.13 (5.41) 0.55 (0.01)
Grass/Shrub 26 119.65 23.71 (17.01) 16.03 (3.49) 14.64 (3.73) 0.50 (1.24)
9
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Fig. 6. Summary assessment metrics (as defined in Section 2.5) comparing mapped predictions to FIA estimates as a function of aggregation unit size (described by distances
between hexagon centroids). Red trend lines produced using quadratic regression.
leveraging the existing inventory data, without additional field cam-
paigns, remotely sensed data, or growth and yield models. However, a
potential limitation to this approach is the requirement of regular his-
torical inventories so that bracketing inventory years can be identified
for LiDAR acquisitions. Additionally, the maximum temporal distance
between growth-adjusted AGB values and the nearest measured AGB
values in our dataset was 10 years; growth-adjustment following our
approach may not be reliable for longer temporal lags.

4.2. Pooled modeling

Despite our efforts to boost the amount of training information
available to models via growth adjustment, we were left with a non-
uniform spatial arrangement of FIA plots across the GPO-LiDAR area.
Several coverages contained fewer than 20 plots in the model dataset
(Table 1), requiring a pooled modeling approach. Pooling information
from all component LiDAR coverages allowed our model to borrow in-
formation from coverages with more training data to build relationships
between our predictors and AGB that were then applied to coverages
with less training data.

We relied on the computed AOA surface to enforce predictor space
similarity with the training data, thus ensuring that our model did not
predict into unknown predictor space, even in coverages with limited
FIA plots. Moreover, the AOA surface provided evidence of predictor-
space uniformity across all 17 component LiDAR coverages, indicating
that each of the component coverages was well represented in the
model training dataset (Meyer and Pebesma, 2021). It stands to reason,
however, that the NYC coverage contained the lowest proportion of
AOA, since there were only two model plots available in this coverage
(Table 1). Generally, pixels falling outside the AOA surface appeared
to be the result of problems with LiDAR collection or data processing
abnormalities, with some visible outliers that could not be attributed to
any known ecological phenomena. We found the AOA mapping espe-
cially valuable in utilizing publicly available LiDAR coverages off the
10

shelf with limited knowledge of, or responsibility for, their provenance.
4.3. Forest definition disparities

A forest can be defined in many ways depending on goals, perspec-
tives, and operational concerns, and aligning the various definitions
to make comparisons or derive relationships is neither a trivial nor a
unique challenge (Chazdon et al., 2016; Riemann et al., 2010; Huang
et al., 2019). FIA’s strict forest definition that is in part based on field
observations of land-use, which is traditionally difficult to classify with
remotely sensed data (Fritz et al., 2017), was difficult to harmonize
with LiDAR. Since FIA does not provide a forest/nonforest map, and
FIA’s definition of forest can exclude significant AGB stocks in ar-
eas containing tree cover (Johnson et al., 2015, 2014), we relied on
LCMAP’s classifications of vegetated cover types to mask our prediction
surfaces. Our AGB maps thus reflect a more inclusive definition of forest
than FIA, incorporating AGB stocks across a broader range of conditions
and land-uses. Despite these definitional differences, there was overlap
between FIA forest and our LCMAP-derived definition, as evidenced
by the non-zero FIA AGB averages for model dataset plots grouped
within each of the four vegetated LCMAP classes (Table 5). Further, we
were able to separate true zeros from structural zeros in FIA nonforest
conditions using a 1 m LiDAR max-height threshold (Table 2), giving
our model information to make predictions in areas with little to no
canopy cover.

Although most of our mapped AGB was contained within pixels
classified as tree cover, a significant minority was contained within
pixels classified as Cropland and Grass/Shrub (Table 5). As the total
area of agricultural lands has been declining in NYS (USDA National
Agricultural Statistics Service, 2019), we expect that many of these
predictions represented early successional forests, or patches of ‘young
and stunted trees’ in open fields (Yang et al., 2018), both transitional
states which are challenges for LCMAP’s classification algorithm (Ma-
honey et al., 2022; Brown et al., 2020). In summary, the landscape-level
context in NYS, and LCMAP’s algorithmic challenges provided support

to generate predictions for all LCMAP vegetated classes.
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Fig. 7. Plot-to-pixel residuals summarized at units spaced 50 km apart. Hexagons with only one reference plot were removed. (a) RMSE Mg ha−1; (b) MAE Mg ha−1; (c) ME Mg
ha−1; (d) Mean FIA AGB value Mg ha−1; (e) Hex-level % RMSE as a function of mean reference value; (f) Hex-level % MAE as a function of mean reference value; (g) Hex-level
ME as a function of mean reference value. 1 observation excluded from (e) and (f) where 0 FIA AGB makes % RMSE impossible to compute. Trend lines in (e) and (f) produced
using logarithmic regression. Trend line in g produced using least-squares regression. RMSE, MAE, and ME as defined in Section 2.5.
4.4. Model performance and map agreement assessment

Our prediction accuracy against the 20% testing partition of our
model dataset was favorably comparable to previous LiDAR-AGB map-
ping studies (Huang et al., 2019; Nilsson et al., 2017; Ayrey et al., 2021;
Hauglin et al., 2021). Using a set of FIA-developed methods (Riemann
et al., 2010; Menlove and Healey, 2020) we further demonstrated
an overall strong agreement between our map-based estimates and
FIA-derived estimates.

It is unsurprising that assessment metrics generally improved as
the scales of aggregation increased, given that the plot-to-pixel scale
can be considered the most rigorous, with the largest variance in both
11
the pixel and plot AGB distributions, as well as the most potential
for spatial misalignment between 30 m pixel predictions and FIA plot
measurements to influence agreement metrics (McRoberts et al., 2018).
When mapped residuals were summarized within units spaced 50 km
apart, larger magnitudes of prediction error (RMSE, ME) emerged, but
region or coverage specific patterns were not evident (Fig. 7). Rather,
we observed ME to be mostly positive across the GPO-LiDAR area, and
to be weakly related to the underlying distribution of FIA reference
data. We can also infer that large RMSE values were a reflection of
extreme individual outliers as they were often paired with reasonable
MAE values.
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Fig. 8. Comparison of mapped predicted AGB to Menlove and Healey (2020) estimates (dashed line) and associated 95% confidence interval (gray shaded region) within 64,000-ha
aggregation hexagons. FIA estimates of AGB are scaled by the proportion of forest cover indicated by LCMAP 2016 Tree cover, Wetland, Croplands, and Grass/Shrub classified
pixels. Hexagons with mapped areas ≤ 10% of their total area were excluded from this analysis. Observations are sorted by increasing FIA estimates along the 𝑥-axis.
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Our choice to maintain FIA’s probability sample in order to lever-
ge unbiased estimators of map agreement metrics came with some
rawbacks. Namely, we had to accept temporal lags of +∕− 2 years
etween LiDAR acquisitions and field inventories, and we had to in-
lude structural zeros in our assessment dataset where FIA did not
ecord tree measurements in nonforest conditions. It is likely that the
ormer inflated our estimates of error due to growth or disturbances
ccurring at plots between the time of inventory and the time of LiDAR
cquisition, though we have no means to quantitatively confirm this
ossibility. We can say with more certainty that the structural zeros
ntroduced by nonforest plots had a large impact on our map agreement
ssessment as evidenced by the stack of non-zero predictions along the
-axis in plot to pixel comparisons (Fig. 5) and the large positive ME
or plots classified as Grass/Shrub and Cropland (Table 7). Given the
arge non-zero biomass predictions produced at these plots, it is not
nreasonable to assume they contain trees unmeasured by FIA that
ould be captured by LiDAR height metrics. These structural zeros are

ikely the driving force behind the positive average prediction error
ME) found in our assessments, and may be the cause for the slight
ncrease in Moran’s I values computed with the assessment dataset
elative to those computed with the model dataset (Supplementary
aterials S7).

Nearly all of our assessments, including performance against the
esting partition of the model data (Fig. 3), the Riemann analysis
Fig. 5), agreement with the Menlove and Healey FIA estimates (Fig. 8),
nd the weak relationship between ME and average FIA AGB estimate
Fig. 7g) reinforced our model’s tendency towards lower accuracy at
he extremes of the FIA reference dataset. These discrepancies can
ikely be attributed to the model structure and training approach,
he aforementioned structural zeros in our map assessment dataset,
s well as the saturation problem inherent in LiDAR-AGB modeling
St-Onge et al., 2008) where models fail to predict the largest AGB
alues in the data set. In general, with the extremes of the response
istribution occurring less often, most models will be more accurate
aking predictions near the mean.

We also recognize the presence of uncertainty in the AGB reference
ata due to allometric, measurement, and locational errors, as well
s our growth adjustment procedure used to boost the size of the
odel dataset, though quantifying the magnitude of this uncertainty
as outside the scope of this paper. Duncanson et al. (2017) indicated

hat different choices in allometric models used to predict AGB from
12

p

ree diameter and height measurements can result in large variation
up to 20%) of plot-level AGB estimates. An improvement would be to
mbed measurement errors, as well as allometric and growth adjust-
ent uncertainty in a quantification of model precision or uncertainty

t the pixel level (CEOS, 2021). Such information could help to develop
ariance estimates for any aggregation of pixel predictions that could
e used in estimating AGB in areas that lack field inventories (Dettmann
t al., 2022; CEOS, 2021).

.5. Map applications

Our rigorously evaluated map products have a range of applications
here knowledge of the spatial patterns of forest biomass (and by
xtension, forest carbon pools) is needed for monitoring, reporting,
nd verification efforts alongside policy or regulatory decision sup-
ort. These uses include the identification of forested areas for future
onitoring, protection, or management, and for providing AGB as a
redictor in subsequent ecological models. Our AGB maps can also
e leveraged as diverse training data for models driven by space-
orne remote sensing platforms with more contiguous spatial and
emporal coverage than LiDAR patchworks, providing the basis for
andscape-scale carbon accounting (Hudak et al., 2020; CEOS, 2021).

. Conclusion

Accurate AGB predictions at fine resolutions can provide landown-
rs and decision makers with valuable information on landscape pat-
erns needed to implement forest-based climate solutions, including
eforestation opportunities, avoided deforestation, and improved man-
gement for carbon storage and sequestration. We implemented a
odel-based approach leveraging extensive field inventory data (FIA)

nd publicly available LiDAR coverages to develop AGB maps across
YS, where forests are expected to contribute substantially as carbon

inks towards achieving a net-zero carbon economy by 2050. Although
iDAR point clouds provide detailed information on forest structure
hat can yield superior models of forest biomass, their limited coverage
n both spatial and temporal domains produces patchworks of disparate
atasets over broad scales. Our modeling approach, and the compre-
ensive set of assessments demonstrated here, addressed several of the
ommon challenges inherent in using LiDAR patchworks for AGB map-

ing, including a lack of temporally matching reference data and data
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discrepancies among component LiDAR coverages. Our results show
that our approach and the resulting map products provide accurate AGB
information at scales relevant to forest and climate stewardship in NYS.
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