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Understanding historical forest dynamics, specifically changes in forest biomass and carbon stocks, has become 
critical for assessing current forest climate benefits and projecting future benefits under various policy, 
regulatory, and stewardship scenarios. Carbon accounting frameworks based exclusively on national forest 
inventories are limited to broad-scale estimates, but model-based approaches that combine these inventories 
with remotely sensed data can yield contiguous fine-resolution maps of forest biomass and carbon stocks across 
landscapes over time. Here we describe a fundamental step in building a map-based stock-change framework: 
mapping historical forest biomass at fine temporal and spatial resolution (annual, 30 m) across all of New York 
State (USA) from 1990 to 2019, using freely available data and open-source tools.

Using Landsat imagery, US Forest Service Forest Inventory and Analysis (FIA) data, and off-the-shelf LiDAR 
collections we developed three modeling approaches for mapping historical forest aboveground biomass (AGB): 
training on FIA plot-level AGB estimates (direct), training on LiDAR-derived AGB maps (indirect), and an 
ensemble averaging predictions from the direct and indirect models. Model prediction surfaces (maps) were 
tested against FIA estimates at multiple scales. All three approaches produced viable outputs, yet tradeoffs 
were evident in terms of model complexity, map accuracy, saturation, and fine-scale pattern representation. 
The resulting map products can help identify where, when, and how forest carbon stocks are changing as 
a result of both anthropogenic and natural drivers alike. These products can thus serve as inputs to a wide 
range of applications including stock-change assessments, monitoring reporting and verification frameworks, 
and prioritizing parcels for protection or enrollment in improved management programs.
1. Introduction

Forests are among the most effective natural carbon sinks and thus 
are essential in stabilizing Earth’s climate, but their capacity to provide 
this critical service has been strongly shaped by past and present anthro-

pogenic impacts. Understanding the spatiotemporal dynamics of forest 
carbon in relation to human activities has become increasingly impor-

tant as policymakers and stakeholders look to nature-based solutions 
to reduce atmospheric greenhouse gas (GHG) concentrations and miti-

gate climate change (Malmsheimer et al., 2008; Fargione et al., 2018; 
Harris et al., 2021; Kaarakka et al., 2021). With a better grasp of local 
social and ecological conditions across the forest landscape, decision-

makers could identify and prioritize parcels of land suitable for different 
strategies such as reforestation, avoided conversion, or enhanced forest 
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management, in order to sustain and/or increase carbon sequestration 
and effectively offset GHG emissions from other sectors (Houghton, 
2005; Houghton et al., 2012). To quantify potential climate benefits, 
carbon status and trends are typically assessed using a stock-change 
methodology that requires historical data and ongoing monitoring ef-

forts via permanent plot networks.

National forest inventories (NFI) like the USDA’s Forest Inventory 
and Analysis (FIA) program provide estimates of forest biomass, car-

bon stocks, and stock-changes at large scales based on their extensive 
sampling design. Although these programs have offered fundamental 
insights and essential data on forest carbon dynamics over the past 
three decades (Woodall et al., 2015; Buendia et al., 2019), they are 
limited spatially by the sample density and remeasurement frequency 
(McRoberts, 2011), and thus cannot represent fine-scaled patterns and 
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dynamics most relevant to planning and decision-making. Model-based 
approaches, which combine field data like the FIA with wall-to-wall 
remotely-sensed data can fill this need by producing predictions for all 
map units (pixels) in a given area.

Largely due to limitations of the available data, implementing 
model-based approaches for characterizing historical spatiotemporal 
dynamics of forest carbon remains challenging. Remotely-sensed data 
best describes the most prominent aboveground components of a for-

est, and for this reason aboveground biomass (AGB) often serves as an 
initial target variable (Houghton et al., 2009) before empirical conver-

sions to specific carbon pools are made (Heath et al., 2009; Woodall 
et al., 2011). Airborne LiDAR has been established as a highly valu-

able remotely-sensed data source for such AGB mapping efforts, but is 
often collected for irregularly defined boundaries at local to regional 
scales, resulting in spatiotemporal patchworks when pooled together 
for broad-scale applications (Skowronski and Lister, 2012; Huang et 
al., 2019; Johnson et al., 2022). Remotely-sensed optical imagery of-

fers far better spatial coverage and temporal consistency than airborne 
LiDAR point clouds, but cannot characterize forest structure with the 
same level of detail nor at the same spatial resolution. Optical datasets 
still provide the best set of historical earth surface observations avail-

able; in particular, the Landsat program offering spectral information at 
a 30 m resolution for the past four decades has supported a broad array 
of historical time series mapping efforts (Hansen and Loveland, 2012; 
Banskota et al., 2014; Wulder et al., 2022). More recent spaceborne re-

mote sensing missions that collect LiDAR and synthetic aperture radar 
(SAR) may offer benefits for quantifying forest structure at similarly 
broad scales, but these platforms cannot match the historical continuity 
offered by Landsat (Rosenqvist et al., 2007; Abdalati et al., 2010; Torres 
et al., 2012; Dubayah et al., 2014).

A handful of studies have used Landsat time series imagery for 
multi-annual, fine-resolution, broad-scale AGB mapping (Matasci et al., 
2018; Kennedy et al., 2018a; Hudak et al., 2020). These efforts can 
be categorized into ‘direct’ approaches, where models were fit using 
AGB measurements from FIA field plots (Kennedy et al., 2018a), and 
‘indirect’ approaches, where models were fit to AGB predictions from 
separate models trained with LiDAR data (Matasci et al., 2018; Hudak 
et al., 2020). Direct approaches offer a degree of parsimony relative to 
their indirect counterparts, and limit the propagation of errors through 
multiple stages of modeling. Indirect approaches could yield more accu-

rate predictions due to the availability of a larger model training sample 
comprised of LiDAR-based predictions (pixels). In theory a sample of 
LiDAR-based predictions would cover a wider range of AGB conditions, 
have improved geolocation accuracy, and offer better spatial compat-

ibility with Landsat pixels relative to traditional field plots (Hudak et 
al., 2020). These two overarching approaches (direct and indirect) have 
only been compared for snapshots in time (single year mapping), over a 
relatively small (820,000 ha) and homogenous section of boreal forest 
in Alaska (Strunk et al., 2014), as well as over Mexico with the Mexican 
NFI and the addition of SAR data (Urbazaev et al., 2018).

In this paper, as part of a broader effort for map-based forest car-

bon accounting across New York State (NYS), we present methods for 
translating FIA’s discrete plot-based inventory to 30 years (1990-2019) 
of annual statewide AGB maps at a 30 m resolution. The resulting map 
products provide the necessary data to replicate FIA’s stock-change ac-

counting approach in a spatially explicit manner with the flexibility to 
produce outputs at scales ranging from individual parcels to the en-

tire state. The models we developed to achieve these ends demonstrate 
what is to our knowledge the first attempt to synthesize direct and in-

direct approaches. We used Landsat time series imagery, FIA plots, and 
publicly available off-the-shelf LiDAR data to develop an ensemble of 
these two distinct modeling strategies (direct and indirect) that lever-

aged their relative strengths and improved the predictive accuracy of 
our overall approach. We assessed agreement between mapped predic-

tions from all three approaches (direct, indirect, and ensemble) and an 
2

independent set of FIA estimates across a range of scales. These meth-
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ods using publicly available data and open-source tools are flexible, 
efficient, and extensible in space and time, thus providing a framework 
for those seeking to develop maps of forest AGB dynamics for both ret-

rospective and monitoring objectives alike. Results produced following 
this framework not only provide inputs for stock-change analyses at 
scales germane to management, but will also broadly support forest 
stewardship, future research, and ongoing planning.

2. Data and methods

2.1. Overview

We developed three modeling approaches (Fig. 1) to map above-

ground biomass (AGB) annually across New York State (NYS). The 
direct approach used AGB estimates at USDA Forest Inventory and Anal-

ysis (FIA; Gray et al. (2012)) field plots as a dependent variable. The 
indirect approach used LiDAR-based predictions of AGB developed by 
Johnson et al. (2022) as a dependent variable. For both approaches, the 
respective dependent variables were associated with predictors derived 
from temporally matching Landsat imagery and landcover classifica-

tions, as well as temporally static climate, topographic, and ecological 
layers. We used each of these combined datasets to produce separate 
stacked ensemble models composed of several machine learning (ML) 
models. Predictions from these two approaches were averaged to cre-

ate a third ensemble approach. Each of the three modeling approaches 
were used to make annual (1990-2019) AGB predictions at a 30 m reso-

lution across the entire state, and the resulting maps were assessed with 
a common set of independent FIA plots.

2.2. Study area

NYS covers 141,297 km2 in the Northeastern US and was approx-

imately 59% forested as of 2019 (USFS, 2020). The forests are domi-

nated by Northern hardwoods-hemlock types but include Appalachian 
oak and beech-maple-basswood forests in the western and southern 
regions of the state respectively (Dyer, 2006). Like much of the US 
Northeast, NYS was extensively deforested during the 18th and 19th 
centuries, with subsequent reforestation, and conservation resulting in 
a landscape dominated by forest stands that are now over 100 years old 
(Whitney, 1994; Lorimer, 2001; Mahoney et al., 2022b). NYS created 
the Forest Preserve in 1885, establishing the foundation for what be-

came the Adirondack and Catskill Parks decades later. Any state-owned 
or acquired lands within these parks has since been designated as ‘for-

ever wild’ and has largely been protected from timber harvesting. More 
recent land use dynamics indicate that total agricultural area has con-

tinued to decline in the state and has been replaced by similar extents of 
forested and developed lands (Widmann et al., 2012; Widmann, 2016). 
Total forest area was estimated to have peaked as of 2012 and forest loss 
due to continued human development has recently outpaced gains due 
to agricultural abandonment (Widmann, 2016; USFS, 2020). Harvesting 
activities, weather-related events, and insect outbreaks drive distur-

bance and damage patterns within consistently forested areas (Kosiba 
et al., 2018; USFS, 2020).

2.3. Field data

Two field datasets were compiled from the FIA inventory in NYS for 
the distinct purposes of model development and map assessment. The 
FIA program compiled AGB estimates for trees ≥12.7 cm (5 in) diameter 
at breast height (Gray et al., 2012), and were converted to units of 
megagrams per hectare (Mg ha−1). The FIA uses permanent inventory 
plots arranged in a quasi-systematic hexagonal grid that are divided 
into five panels, each assumed to have complete spatial coverage over 
the state, and remeasured on a 5–7 year basis (Bechtold and Patterson, 
2005). Tree measurements, and subsequently AGB estimates based on 

allometrics, were only recorded on portions of plots considered forested. 
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Fig. 1. A flowchart diagram showing the key elements of the modeling and mapping methodology. Cylinders represent data repositories, parallelograms represent 
data products and results, rectangles represent processing steps, and ovals represent models.
For an area to be considered forested by the FIA, the area must be at 
least 10% stocked with trees, at least 0.4 ha (1 acre) in size, and at least 
36.58 m (120 ft) wide. Any lands meeting these minimum requirements, 
but developed for nonforest land uses, were not considered forested. By 
this definition, it is likely that some nonforest conditions contained AGB 
that was not measured. In absence of additional information, however, 
we assumed that any nonforest conditions represented 0 AGB.

FIA plots are composed of four identical circular subplots with radii 
of 7.32 m (24 ft), with one subplot centered at the macroplot centroid 
and three subplots located 36.6 m (120 ft) away at azimuths of 360°, 
120°, and 240° (Bechtold and Patterson, 2005). The plot locations were 
provided by the FIA program in the form of average coordinates, col-

lected over multiple repeat visits, representing the centroid of the center 
subplot, which we then used to build a polygon dataset representing 
the entire plot layout including all four subplots. Averaged coordinates 
were necessary due to the lack of precision of initial GPS coordinates 
for the macroplot centroids (Cooke, 2000; Hoppus and Lister, 2005). We 
use the phrase ‘FIA plot’ to refer to the aggregation of all four subplots.

We only considered FIA plots following the national plot design 
where all subplots were marked as measured. Importantly, excluding 
non-measured plots does not invalidate FIA’s probability sample be-

cause the FIA program assumes these plots to be randomly distributed 
across the landscape (Bechtold and Patterson, 2005). Further, when 
available plots were inventoried more than once, single instances were 
selected randomly to avoid replication. These initial selection criteria 
resulted in a pool of 5,144 plots inventoried between 2002 and 2019. 
We then divided this set of plots into the model development and map 
assessment datasets using FIA’s panel designation, with one of the five 
panels randomly selected and all plots with this designation assigned 
to the map assessment dataset, and the remaining plots assigned to 
3

the model development dataset. In this way we partitioned 20% of 
the available plot data for an independent map assessment, yielding 
a probability sample with complete spatial coverage which we used to 
generate unbiased estimates of map agreement metrics (Riemann et al., 
2010; Stehman and Foody, 2019).

For the model development dataset we further selected the 1,954 
completely forested plots to ensure that non-response in nonforest con-

ditions would not degrade the relationship between predictors and 
plot-level AGB. However, to train and test our models with informa-

tion covering the broadest possible range of conditions we added a set 
of 95 completely nonforested plots that were identified as true zeroes 
(AGB) based on LiDAR-derived maximum heights ≤ 1 m (Johnson et al., 
2022). The model development dataset contained 2,049 unique plots 
(Table 1). For the map assessment dataset we filtered plots external to 
our mapped area based on our landcover mask (Section 2.7), as these 
plots were considered outside our population of interest, resulting in 
545 total plots (Table 1).

2.4. LiDAR data and LiDAR pixel sampling

For our indirect modeling approach we used existing LiDAR-based 
AGB prediction surfaces as reference data for model training (Fig. 2). 
Johnson et al. (2022) developed these 30 m surfaces with a spatio-

temporal patchwork of 17 leaf-off LiDAR collections covering 62.46% 
(7,835,690 ha) of NYS. LiDAR data were collected from altitudes rang-

ing from 700–5300 m with pulse densities ranging from 1.54–3.24 
pulses per m2. A set of 40 predictors computed from the height-

normalized point clouds, in combination with topographic, climatic, 
landcover, and cadastral data were colocated with FIA plots as model 
training data. Stacked ensembles (Wolpert, 1992) of machine learning 
models were used to make predictions across the patchwork; further 

details can be found in Johnson et al. (2022).
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Fig. 2. LiDAR-based AGB reference data. a) Spatial coverages of LiDAR collections colored by year of acquisition. b) Spatiotemporal patchwork of LiDAR-based AGB 
predictions sampled for reference data.
Following Johnson et al. (2022), we restricted the map space using 
a vegetation mask based on LCMAP primary classifications (Zhu and 
Woodcock, 2014; Brown et al., 2020) as well as an area of applicability 
mask (Meyer and Pebesma, 2021). As such, our sample of LiDAR-based 
AGB predictions was limited to vegetated landscapes, and where predic-

tions were based on predictor data that was sufficiently represented in 
the training data. Following the indirect modeling efforts described in 
Hudak et al. (2020), we conducted a stratified random sample from the 
LiDAR-based AGB predictions, where strata were defined as 20 equal 
4

intervals ranging from 0 to the maximum mapped AGB value (~330 
Mg ha−1). 1,000 pixels were sampled from each stratum resulting in a 
total of 20,000 spatially resolved AGB predictions.

2.5. Landsat and auxiliary data

We produced a set of 16 annual Landsat-derived predictors by pro-

cessing Landsat collection 1 data (C1, USGS (2018)) in Google Earth 
Engine (GEE, Gorelick et al. (2017)). We followed the processing frame-

work described in Mahoney et al. (2022b), relying on growing-season 
medoid composites processed with coefficients from Roy et al. (2016)
and the Landtrendr implementation in GEE (hereafter LT-GEE) to pro-
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Table 1

Annual counts of FIA plots divided into model devel-

opment and map assessment datasets.

Year Model Development Map Assessment

2002 172

2003 188

2004 98

2005 106

2006 157

2007 207

2008 165

2009 146

2010 153

2011 174

2012 191

2013 138

2014 156

2015 119

2016 96

2017 129

2018 19 96

2019 33 51

Total 2049 545

vide a continuous, and smoothed, 30-year time series of pixel-level 
metrics describing surface conditions and disturbance history (Kennedy 
et al., 2010, 2018b). All spectral indices and their respective deltas com-

puted with a 1-year lag (Hudak et al., 2020) were fit to Normalized Burn 
Ratio (NBR) temporally segmented vertices (Kennedy et al., 2018b). We 
computed the normalized burn ratio (NBR; Kauth and Thomas (1976)), 
tasseled-cap wetness, brightness, and greenness (TCW, TCB, TCG; Cocke 
et al. (2005)), normalized difference vegetation index (NDVI; Kriegler 
et al. (1969)), simple ratio (SR; Jordan (1969)), and modified simple ra-

tio (MSR; Chen (1996)) using the ‘awesome-spectral-indices’ javascript 
library for GEE (Montero et al., 2022). The disturbance metrics were 
processed with a separate NBR segmentation using LT-GEE parame-

ters designed to be more sensitive to the timing of discrete disturbance 
events (Kennedy et al., 2018b). We chose to use NBR to process all other 
LT-GEE-derived predictors, providing disturbance history and temporal 
break-points to which all other indices were fit, since it has been demon-

strated to best represent disturbance events (Kennedy et al., 2010). 
Supplementary Materials 1 provides additional information on the LT-

GEE parameters used here.

We also included the annual primary and secondary land cover 
classification predictions from United States Geological Survey’s Land 
Change Monitoring, Assessment, and Projection (LCMAP) version 1.2 
(Zhu and Woodcock, 2014; Brown et al., 2020). Further, a set of steady-

state ancillary predictors was included to represent geospatial variation 
in climate, topography, ecology, and landcover (Kennedy et al., 2018a). 
These predictors included precipitation and temperature 30 year nor-

mals derived from PRISM Climate Group data (PRISM Climate Group, 
2022), elevation, aspect, slope, and a topographic wetness index de-

rived from a 30 m digital elevation model (Beven and Kirkby, 1979; 
U.S. Geological Survey, 2019; Mahoney et al., 2022a), a global canopy 
height map representing 2005 conditions (Simard et al., 2011; Hudak 
et al., 2020), distance (m) to nearest area and line water identified 
by the US Census Bureau (US Census Bureau, 2013; Walker, 2022), 
National Wetland Inventory classifications developed by the Fish and 
Wildlife Services (FWS) (Wilen and Bates, 1995; FWS, 2022), and the 
Environmental Protection Agency’s (EPA) level 4 ecozones (CEC, 1997; 
Omernik and Griffith, 2014). Where individual EPA level 4 ecozones 
did not cover ≥2% of the state they were aggregated to their level 3 
ecozone, and if this aggregation did not cover ≥2% of the state these 
ecozones were set to “other”. All categorical variables (LCMAP, eco-

zones, wetlands) were encoded as boolean indicator variables.

Each of the 29 predictor layers (Table 2) were projected to match 
Landsat 30 m pixel geometries. The raster stacks of predictors were 
5

clipped and aggregated (weighted average) at the constructed FIA plot 
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polygons (Section 2.3), and were also overlaid with the sampled LiDAR-

based AGB predictions (Section 2.4), creating two distinct sets of data 
for model training based on the same set of predictors. The exactextractr 
(Daniel Baston, 2022) and terra (Hijmans, 2022) packages for the R (R 
Core Team, 2021) programming language were used to compile the 
training datasets.

2.6. Model development

We developed three distinct modeling approaches using a standard 
training framework. The direct approach involved training models on 
a random 80% partition of the model dataset derived from FIA field 
data (Section 2.3), and the indirect approach involved training models 
on a random 80% partition of the sample of LiDAR-based AGB predic-

tions (Section 2.4). We developed separate sets of ML models for both 
approaches and combined each set in a stacked ensemble to better re-

flect model selection uncertainty (Wintle et al., 2003) and to reduce 
the generalization error of our component models (Wolpert, 1992). The 
third approach was an ensemble combining predictions from the direct 
and indirect ensemble models in a simple average, as model averaging 
has been demonstrated to improve upon individual predictions where 
data is noisy and the relationships between predictors and responses are 
complex and largely unknown (Wolpert, 1992; Dormann et al., 2018). 
For all three approaches, we used the 20% test partitions to assess model 
performance against each respective dataset and iterate with various 
predictors and model forms.

Both the direct and indirect approaches used all 29 predictors de-

scribed in Section 2.5, while the ensemble was developed with only 
predictions from these models. Both the direct and indirect approaches 
combined a random forest, as implemented in the ranger R package 
(Breiman, 2001; Wright and Ziegler, 2017) and a stochastic gradient 
boosting machine (GBM) as implemented in the lightgbm R package 
(Friedman, 2002; Ke et al., 2017; Shi et al., 2022). The direct approach 
also incorporated a support vector machine (SVM) as implemented in 
the kernlab R package (Cortes and Vapnik, 1995; Karatzoglou et al., 
2004). SVM training time scales between quadratic and cubic with re-

spect to training observations (Bottou and Lin, 2007) and thus was not 
computationally feasible to implement for our indirect approach with 
16,000 training points.

Each of the component ML models were tuned using the 80% train-

ing partition described above and an iterative grid search, starting by 
testing wide ranges of hyperparameters using five-fold cross validation 
and then narrowing down to only the most performant combinations 
over several iterations. Models then used the most accurate sets of hy-

perparameters in all other analyses. The selected hyperparameters for 
each component model and the coefficients in the linear regression en-

sembles are available in Supplementary Materials 2. For each of the n 
observation in the training dataset, all component models were fit, us-

ing their optimal hyperparameters, with n−1 observations. Predictions 
for each component model were made for the nth (left out) observa-

tion. A linear regression model was used to estimate AGB as a function 
of these leave-one-out predictions, combining the component ML mod-

els in a linear regression ensemble as follows:

AGB = 𝛽0 + 𝛽1 ⋅ 𝑃1 +…+ 𝛽𝑛 ⋅ 𝑃𝑛 (1)

where 𝛽∗ are coefficients estimated through ordinary least squares re-

gression, and 𝑃∗ are the respective component model predictions. At an 
abstract level the direct approach was constructed as follows:

AGB = 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑅𝐹 ,𝑆𝑉𝑀,𝐿𝐺𝐵) (2)

where 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 represents Equation (1), and 𝑅𝐹 , 𝑆𝑉𝑀 , and 𝐺𝐵𝑀

would be substituted for the 𝑃∗ variables in Equation (1). The indirect 
approach was constructed as follows:
AGB = 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑅𝐹 ,𝐿𝐺𝐵) (3)
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Table 2

Definitions of predictors used for model fitting.

Group Predictor Definition

TCB, TCW, TCG Tassled cap brightness, wetness, and greenness, with noise removed using LT-GEE

NBR Normalized burn ratio with noise removed using LT-GEE

NDVI Normalized difference vegetation index with noise removed using LT-GEE

SR Simple ratio with noise removed using LT-GEE

Spectral indices

MSR Modified simple ratio with noise removed using LT-GEE

Delta Delta_* Change computed with 1 year lag for all predictors in the ‘Spectral indices’ group

Disturbance YOD, MAG Year of most recent disturbance and associated magnitude of NBR change, as identified using an NBR 
segmentation in LT-GEE (1985-2019)

CHM Global canopy height model reflecting 2005 conditions (Simard 2011), downsampled from 1 km to 30 m 
resolution

ECOZONE EPA level 4 ecozones. Aggregated to level 3 if level 4 areas < 2% of the state. Set to ‘other’ if level 3 aggregation 
< 2% of state.

WETLAND Wetland classification codes from the FWS National Wetlands Inventory

Ecological

DIST_TO_WATER Distance in meters to nearest TIGER/Line Shapefile water from the US Census Bureau

Climate PRECIP, TMAX, TMIN 30-year normals for precipitation, maximum temperature, and minimum temperature, derived from annual PRISM 
climate models

Topographic ASPECT, ELEVATION, SLOPE, TWI Aspect, elevation, slope, and topographic wetness index derived from a 30-meter digital elevation model

Landcover LCPRI, LCSEC LCMAP primary and secondary land cover classifications
and the overarching ensemble was constructed as follows:

AGB = 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑅𝐹𝑑𝑖𝑟𝑒𝑐𝑡, 𝑆𝑉𝑀𝑑𝑖𝑟𝑒𝑐𝑡,𝐿𝐺𝐵𝑑𝑖𝑟𝑒𝑐𝑡) + 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑅𝐹𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡,𝐿𝐺𝐵𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡)
2

(4)

2.7. AGB mapping and postprocessing

The linear model ensembles for the direct and indirect approaches, 
as well as the overarching average ensemble, were used to make pre-

dictions for all 30 m pixels across the state. With recognition that our 
predictions are best suited to areas populated by woody biomass, we 
overlaid our predictions with the LCMAP version 1.2 primary landcover 
classification product (Zhu and Woodcock, 2014; Brown et al., 2020), 
which has a reported overall accuracy of 77.4% in the Eastern United 
States for the years 1985-2018 (Pengra et al., 2020). LCMAP data shared 
identical pixel geometries with our AGB maps and its annual resolution 
allowed for temporal alignment with each individual year of mapping. 
We masked our AGB prediction surfaces to remove developed, cropland, 
water, and barren pixels and then tabulated AGB by the three remaining 
vegetated LCMAP classes of tree cover, grass/shrub, and wetland.

2.8. Map agreement assessment

We assessed the agreement between our AGB maps and FIA refer-

ence data following approaches prescribed by Riemann et al. (2010) and 
Menlove and Healey (2020). The former evaluated agreement across 
a range of scales and accounts for the mismatch in spatial support 
between map aggregate estimates (many pixels) and FIA aggregate es-

timates (few plots) by only extracting pixels coincident with FIA plots. 
The latter compared FIA-derived AGB estimates – which have been ad-

justed for forest cover within, and area-extrapolated to, hexagon map 
units – to zonal averages of our mapped AGB.

Following Riemann et al. (2010) we compared our AGB prediction 
surfaces from each of the three modeling approaches to the map as-

sessment dataset (Section 2.3). Comparisons were made at both the 
plot-to-pixel scale and within variably-sized hexagons with distances 
between centroids ranging from 20 km (34,641 ha) to 50 km (216,506 
ha). Since the plot inventories spanned multiple years (2007, 2012, 
2018, 2019) we extracted predictions from only those map surfaces 
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that were temporally aligned with the specific plot inventories in our 
dataset. We then pooled this data together, producing a temporally 
generalized accuracy assessment. As an extension of the Riemann et al. 
(2010) methodology we assessed the spatial patterns of prediction error 
by summarizing the plot-to-pixel residuals and FIA reference data dis-

tributions within hexagon units with centroids spaced 50 km apart. We 
also grouped plot-to-pixel results by the majority LCMAP classification 
at each plot, to demonstrate the level of agreement across vegetated 
landcover classes.

Following the Menlove and Healey (2020) approach, we compared 
the average of our masked predictions, weighted by the proportion of 
each pixel intersecting a given hexagon, to a set of FIA-derived esti-

mates for 64,000 ha hexagons representing FIA’s finest acceptable scale 
for the most recent inventory cycle in NYS (2013–2019). We used 2016 
AGB maps from each approach for this comparison since 2016 sits in the 
center of the time period that is represented in the Menlove and Healey 
(2020) data. As recommended, we accounted for differences in forest 
definitions between the FIA estimates and our mapped estimates by di-

viding FIA estimates by the proportion of vegetated (based on LCMAP 
tree cover, grass/shrub, wetland) area within each hexagon. Lastly, we 
limited this comparison to only hexagons with a majority area falling 
inside NYS boundaries.

Assessment metrics included mean absolute error in Mg ha−1 (MAE), 
percent MAE relative to mean reference AGB (% MAE), root-mean-

squared error in Mg ha−1 (RMSE), percent RMSE relative to mean 
reference AGB (% RMSE), mean error in Mg ha−1 (ME), and the coeffi-

cient of determination (𝑅2). Equations and formulas for each metric and 
the associated estimates of standard errors are provided in Supplemen-

tary Materials 3. The exactextractr (Daniel Baston, 2022), sf (Pebesma, 
2018), and terra (Hijmans, 2022) packages in the R programming lan-

guage (R Core Team, 2021) were used to conduct all analyses described 
here.

2.9. Qualitative comparisons of fine spatial patterns

We also visually compared mapped predictions for each modeling 
approach in and around Huntington Wildlife Forest (HWF), a 6,000 
ha forested area in Newcomb, NYS containing both reserves and areas 
of active management and where our team has developed a familiar-

ity with the landscape through in situ and remote observations alike. 
Though limited to a small fraction of the statewide context, this com-
parison aimed to qualitatively assess relative strengths and weaknesses 
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Fig. 3. Annual statewide summaries (average AGB) for each modeling approach by LCMAP class.
in characterizing fine spatial patterns of AGB density across various 
management regimes and landscape conditions. We conducted pair-

wise raster subtraction to produce surfaces that highlighted areas of 
disagreement across modeling approaches and used both a 1 m LiDAR-

derived canopy height model (CHM; Atlantic Inc (2015)) as well as 
0.5 m natural color imagery from the National Aerial Imagery Program 
(NAIP; Earth Resources Observation And Science (EROS) Center (2017)) 
for additional qualitative reference information. The CHM and the NAIP 
imagery reflected conditions in 2015, and so 2015 AGB prediction sur-

faces from each modeling approach were compared.

3. Results

3.1. Annual aboveground biomass maps

We produced 30 years (1990-2019) of statewide AGB maps at a 30 m 
resolution using each of the three modeling approaches. Statewide AGB 
averages for each of the three modeling approaches increased steadily 
over the time period for each of the included LCMAP classifications 
(Fig. 3). However, in agreement with its higher saturation threshold 
(Section 3.2), the indirect approach produced significantly larger aver-

ages than both the direct and the ensemble approaches (Fig. 3). Around 
2006, all three models produced small decreases in the statewide aver-
7

age for tree cover classified pixels; this corresponds with the timing of 
large-scale insect outbreaks in the Northeast (2005-2007, Kosiba et al. 
(2018)), and specifically a forest tent caterpillar (Malacosoma disstria) 
defoliation event that affected roughly 1.2 million acres of land in NYS 
(USFS, 2006). While defoliation alone does not necessarily result in AGB 
loss, our models’ reliance on spectral information precluded them from 
making the distinction between foliar changes and structural changes.

A full time series raster subtraction (2019 AGB - 1990 AGB) using 
the ensemble predictions reflected these annual trends, with increases 
in AGB dominating the map (Fig. 4). The 30-year stock-change map 
also featured patterns of AGB change driven by anthropogenic impacts 
and cadastral boundaries contrasted with those that can be attributed 
to otherwise natural processes. Specifically, the stock-change map high-

lighted a mosaic of working forests and Adirondack Forest Preserve land 
and the varying spatial patterns and magnitudes of change accompany-

ing these distinct land uses (Fig. 4 b), distinguished patchy AGB losses 
within privately held lands to the west of the Allegany river against sub-

tle AGB gain and relative stability within Allegany State Park to the east 
of the river (Fig. 4 c), and revealed a band of forest growth that runs 
north to south along the border of the Catskill Forest Preserve (Fig. 4 d).

At the stand scale, where we have landowner-provided manage-

ment records in Northern NYS, our annual maps accurately captured 
the timing, severity, and subsequent recovery (regeneration) from har-

vest activities in working forests (Fig. 5). Looking in particular at the 

clearcut harvests in Fig. 5 and the residual AGB within the boundaries 
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Fig. 4. New York State (USA) AGB difference map (2019 AGB - 1990 AGB) with predictions from the ensemble model. a) Statewide scale. b) A mosaic of working 
forests and Adirondack Forest Preserve land south of Stillwater Reservoir, NYS. c) Allegany River area with a portion of Allegany State Park to the east of the river. 
d) Forest growth along the border of the Catskill Forest Preserve. Values are capped at ± 75 Mg ha−1 for display.
of these polygons, we note that the spatial management records we have 
are best approximations of harvest prescriptions and may not reflect the 
true extent of harvest activity. Likewise, disturbances outside these har-

vest polygons were captured in our mapped predictions (note western 
portion of Fig. 5 beginning in 2015) and in this instance can be at-

tributed to harvest events that were simply not included in the records 
provided by the landowner.

3.2. Map agreement

Although differences in estimated accuracy metrics were nominal 
among our three modeling approaches, the ensemble model was most 
accurate (Table 3). The indirect approach on the other hand was least 
accurate by these metrics, likely due to the additive effects of pixel-

level error in the initial LiDAR-AGB predictions (Johnson et al., 2022). 
We observed improved agreement between mapped predictions and FIA 
estimates as the aggregation unit size increased for all three modeling 
approaches, with % MAE decreasing from 34.1 to 19.46% for the direct 
approach, from 35.69 to 20.23% for the indirect approach, and from 
33.88 to 19.23% for the ensemble approach (Table 3). Similar patterns 
of increasing agreement were exhibited for MAE, RMSE, %RMSE, and 
R2, but ME estimates were mostly stable and positive across all scales 
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of aggregation.
All three models tended to overpredict on zero and near-zero AGB 
reference observations, particularly at the plot:pixel and 20 km scales 
of comparison (Fig. 6), which resulted in positive and significant ME es-

timates (Table 3). Many of these overpredictions can be explained by 
our reliance on tree-based models (RF, GBM) whose predictions are the 
average values within terminal nodes (Baccini et al., 2008; Urbazaev et 
al., 2018). However, these overpredictions might also have been due to 
structural zeroes in our map assessment dataset, where FIA AGB was 
assumed to be zero but is actually not measured due to FIA’s strict for-

est definition (Section 2.3; Johnson et al. (2022)). Large relative errors 
in FIA plots classified as grass/shrub provided further evidence of the 
impact of forest definition discrepancies on our map agreement results 
(Table 4). Unfortunately, we have had no means to identify plots con-

taining structural zeroes without additional data, and could not separate 
them from plots with otherwise real overpredictions and errors.

Underprediction on the largest reference observations (i.e. satura-

tion), a common issue when modeling forest structure with optical 
imagery (Lu, 2005; Duncanson et al., 2010), was evident for all three 
modeling approaches but to varying degrees (Fig. 6). The direct ap-

proach saturated first, failing to predict beyond 204 Mg ha−1, whereas 
the indirect approach was the best in this regard, predicting up to 289 
Mg ha−1 and leaving only 1% of the reference data beyond its ceiling. In 

general, patterns of over and underprediction diminished and system-
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Fig. 5. Quantifying AGB changes due to harvests and subsequent regeneration in Northern New York State (USA). a) Annual AGB predictions from the ensemble 
model for selected years overlaid with harvest records symbolized by documented harvest type and timing. b) Annual area-level summaries of mapped predictions 
(average AGB) for harvest polygons grouped by harvest type and timing with trajectory symbology corresponding to polygon symbology in a).
atic agreement improved at larger scales of aggregation as evidenced 
by the convergence of GMFR and 1:1 lines for all models (Fig. 6). The 
indirect approach yielded the best systematic agreement (GMFR vs 1:1) 
across all scales despite being least accurate in terms of the estimated 
metrics (Fig. 6; Table 3).

Map comparisons with the FIA’s small area estimates (Menlove and 
Healey (2020)) similarly demonstrated both patterns of over and un-
9

der prediction on the extremes of reference AGB distributions, as well 
as the effects of saturation for each of the three modeling approaches 
(Supplementary Materials 4). Despite consistently underpredicting rel-

ative to the Menlove and Healey (2020) estimates, the direct approach 
yielded more estimates within the provided 95% confidence intervals 
(90.31%) as compared to the ensemble (88.27%) and indirect (85.2%) 
approaches. Likewise, local errors (over and underprediction) were 

more related to the amount of reference AGB within each hexagonal 
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Table 3

Map agreement results for select scales. RMSE, MAE, ME in Mg ha−1 . Scale = distance between hexagon centroids in km; PPH = plots per hexagon; n = number of 
comparison units (plots or hexagons). All accuracy metrics as defined in Supplementary Materials 3. Standard errors in parentheses with minimum capped at 0.01.

Scale n PPH Model % MAE MAE % RMSE RMSE ME 𝑅2

Plot:Pixel 545

Direct 34.10 41.20 (1.38) 43.29 52.31 (3.06) 4.83 (2.23) 0.38 (0.01)

Indirect 35.69 43.13 (1.44) 45.30 54.73 (3.14) 11.15 (2.30) 0.32 (0.01)

Ensemble 33.88 40.94 (1.36) 42.84 51.76 (2.98) 7.99 (2.19) 0.39 (0.01)

20 km 302 1.80

Direct 29.17 35.53 (1.69) 37.81 46.06 (4.19) 3.42 (2.65) 0.40 (0.01)

Indirect 31.51 38.39 (1.71) 39.80 48.48 (3.92) 9.22 (2.74) 0.33 (0.01)

Ensemble 29.57 36.02 (1.64) 37.65 45.86 (4.21) 6.32 (2.62) 0.40 (0.01)

30 km 172 3.17

Direct 25.35 30.76 (1.87) 32.41 39.32 (6.12) 3.66 (2.99) 0.37 (0.01)

Indirect 27.40 33.25 (1.86) 33.97 41.21 (5.34) 10.03 (3.06) 0.30 (0.01)

Ensemble 25.79 31.30 (1.76) 32.02 38.86 (5.01) 6.85 (2.93) 0.38 (0.01)

50 km 73 7.47

Direct 19.46 23.85 (2.70) 26.97 33.05 (12.80) 2.58 (3.88) 0.43 (0.01)

Indirect 20.23 24.80 (2.39) 26.14 32.04 (8.54) 9.46 (3.61) 0.46 (0.01)

Ensemble 19.23 23.57 (2.39) 25.38 31.10 (10.31) 6.02 (3.60) 0.49 (0.01)

Table 4

Map agreement at the plot to pixel scale, grouped by LCMAP classification. RMSE, MAE, ME in Mg ha−1. n = number of plots. All accuracy metrics as defined in 
Supplementary Materials 3. Standard errors in parentheses (R2 standard errors capped at 0.01 and 1.00).

LCMAP n Model % MAE MAE % RMSE RMSE ME 𝑅2

Grass/Shrub 14

Direct 87.58 34.07 (7.50) 111.81 43.49 (66.44) 3.76 (12.02) 0.41 (1.00)

Indirect 101.20 39.36 (10.95) 143.30 55.74 (217.09) 33.85 (12.28) 0.03 (1.00)

Ensemble 93.92 36.53 (6.65) 112.34 43.69 (51.15) 18.80 (10.94) 0.40 (1.00)

Wetland 57

Direct 40.19 34.56 (4.34) 55.15 47.43 (28.20) -9.21 (6.22) 0.40 (0.01)

Indirect 43.47 37.38 (4.26) 57.12 49.12 (29.95) -10.29 (6.42) 0.35 (0.02)

Ensemble 40.87 35.15 (4.22) 54.94 47.24 (31.20) -9.75 (6.18) 0.40 (0.01)

Tree cover 474

Direct 33.13 42.21 (1.48) 41.67 53.10 (3.44) 6.55 (2.42) 0.31 (0.01)

Indirect 34.47 43.93 (1.55) 43.42 55.34 (3.46) 13.06 (2.47) 0.26 (0.01)

Ensemble 32.78 41.77 (1.46) 41.19 52.50 (3.23) 9.80 (2.37) 0.33 (0.01)
unit rather than spatial or regional patterns when plot-to-pixel residu-

als were mapped (Supplementary Materials 4).

Tree cover agreement for each model (Table 4) largely matched the 
overall plot-to-pixel agreement in Table 3, because the vast majority 
of map assessment plots fell within this classification. Map agreement 
was worse for the fewer number of wetland and grass/shrub classi-

fied plots, with ME estimates indicating significant overprediction in 
grass/shrub classified plots and underprediction in wetland classified 
plots (Table 4). This discrepancy in agreement among vegetated classes 
can likely be attributed to the varying degrees to which each landcover 
classification was represented in our reference datasets and the mis-

match between our LCMAP-defined vegetation mask (Section 2.7) and 
the strict forest definition used by FIA (Section 2.3).

3.3. Qualitative comparisons of fine spatial patterns

Within Huntington Wildlife Forest (HWF), in the forest preserve 
land to the north of HWF (High Peaks Wilderness; Pataki and Cahill 
(1999)), and in the working forest to the southwest of HWF, the indi-

rect AGB map best represented known patterns across the landscape and 
contained the most spatial heterogeneity relative to the other two ap-

proaches (Fig. 7). This was most evident where the largest discrepancies 
between maps were present in the northeast and the northwest corners 
of the area. In the northeast corner, where conifer-dominated wetlands 
(NAIP Fig. 7) contained some of the tallest vegetation in the area (CHM 
Fig. 7), the indirect approach produced large biomass predictions (≥225 
Mg ha−1) in agreement with these landscape features. In the northwest 
corner of the map, where high-elevation spruce-fir forests are present, 
the indirect approach produced correspondingly small AGB predictions 
whereas the direct approach was unable to distinguish these conditions 
from the rest of the landscape. By definition, the ensemble map repre-

sented a blend of characteristics from the direct and indirect maps in 
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terms of both fine spatial patterns and magnitudes of predictions.
4. Discussion

In this study we combined temporally smoothed, segmented, and 
gap-filled Landsat imagery with a sample of LiDAR-based aboveground 
biomass (AGB) predictions and a set of the USDA’s Forest Inventory 
and Analysis (FIA) field plots to produce annual wall-to-wall maps of 
AGB for New York State (NYS), USA. To this end, we developed three 
separate modeling approaches including direct, indirect, and ensemble 
approaches. Overall, we found that all three modeling approaches per-

formed similarly, indicating that each approach could be satisfactory on 
its own, yet tradeoffs were evident relating to model complexity, map 
accuracy, saturation, and representation of fine spatial patterns. Com-

parisons to existing studies with similar goals, but in temperate regions 
with different disturbance and management regimes, indicated that the 
basic methods herein can be leveraged to track forest biomass dynam-

ics across ecological domains and within working forests regardless of 
the dominating forestry practices. The maps produced from each mod-

eling approach offer valuable insights into the spatiotemporal patterns 
of forest structure, development, disturbance, and change over 30 years 
and can serve as inputs for a variety of applications related to map-

based stock-change assessments, screening or prioritizing forest parcels 
for enrollment in nature-based climate programs, and future monitor-

ing, reporting, and verification (MRV) systems across NYS.

4.1. Tradeoffs among modeling approaches

There was no single winner among the three modeling approaches, 
but rather each offered a set of benefits that can appeal to different 
project-specific constraints and goals. Overall, the ensemble approach 
produced the most accurate maps (Table 3) which combined character-

istics from the direct and indirect approaches in terms of fine-scale pat-

tern representation and model saturation. Though it was the most com-
plex of the three approaches, it simultaneously mitigated limitations 
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Fig. 6. Comparison of mapped AGB to FIA estimated AGB across selected scales represented by distances between hexagon centroids (plot:pixel, 10 km, 25 km, and 
50 km). Geometric mean functional relationship (GMFR) trend line shown with dashed (orange) line, and 1:1 line shown with solid (red) line.
and leveraged strengths associated with the plot-based (Section 2.3) 
and LiDAR-based (Section 2.4) training datasets. These results provide 
general support for model ensembling in ecological applications where 
data are noisy and natural variability is a significant source of error 
(Dormann et al., 2018).

By definition the direct approach was most parsimonious with only 
one stage of modeling and the smallest investment of time and effort 
required to produce AGB map products. The indirect and ensemble 
approaches required the computationally demanding management and 
analysis of terabytes of LiDAR data (Johnson et al., 2022), though that 
effort could be reduced if LiDAR strips or samples were used in lieu 
of wall to wall mapping (Wulder et al., 2012; Matasci et al., 2018; Ur-

bazaev et al., 2018). Additionally, increased complexity embedded in 
the indirect and ensemble models makes estimating prediction uncer-

tainty more challenging than for the direct approach (Saarela et al., 
11

2016).
The indirect approach was least impacted by saturation, resulting in 
the best systematic agreement with FIA reference data across all scales 
(Fig. 6). With only 1% of reference AGB plots beyond the indirect mod-

el’s prediction ceiling, this approach was best suited to track continued 
growth in mature forest stands. This feature would be especially impor-

tant in NYS and the broader region where historical land-use dynamics 
indicate that the majority of forest stands have either reached or are ap-

proaching maturity (Section 2.2). Failure to accurately quantify AGB in 
these stands will lead to significant underestimation of carbon storage 
and sequestration, at both local and statewide scales. Further, we found 
that the indirect approach produced maps that best aligned with our 
knowledge of local forest conditions and best represented fine-scaled 
features on the landscape (Fig. 7). The strengths of the indirect model 
can be attributed to the much larger sample of reference data, and in 

theory the greater coverage of both the AGB distribution and the land-
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Fig. 7. A qualitative comparison of maps from each modeling approach within Huntington Wildlife Forest (boundary mapped with black box in NAIP panel) and the 
surrounding area in Newcomb, New York (full area extent mapped with black box in New York State panel). Pair-wise raster subtractions (values capped at ± 75 
Mg ha−1 for display) highlight spatial patterns and magnitudes of differences between model predictions. Ensemble - Direct not shown because it duplicates Indirect 
- Ensemble. A 1 m LiDAR-derived canopy height model and 0.5 m natural color National Aerial Imagery Program (NAIP) orthophotography included for additional 
reference information. All surfaces represent conditions in 2015.
scape conditions in NYS, acquired from broad-scale LiDAR-based AGB 
maps (Section 2.4).

4.2. Comparison to existing studies

Comparisons of model performance and map agreement across stud-

ies should be made with caution, as landscapes, data collection proto-

cols, remotely sensed data products, and AGB distributions can differ 
widely and have large impacts on resulting agreement metrics. How-

ever, we do so here in a relative fashion to situate the success of our 
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approaches among existing studies with similar goals. Kennedy et al. 
(2018a), Hudak et al. (2020), and Matasci et al. (2018) each lever-

aged Landsat time series data to map AGB annually at a 30 m res-

olution across the following regions and time periods (respectively): 
Western Cascades province of Oregon and Northern California, 2000-

2016; Washington, Oregon, Idaho, and Montana, 1990-2012; Canada’s 
forest-dominated ecosystems, 1984-2016. Kennedy et al. (2018a) used 
direct modeling only, yielding an RMSE of ~103 Mg ha−1 against model 
training plots with a wide range of AGB values (0-1000 Mg ha−1), 
while Hudak et al. (2020) and Matasci et al. (2018) exclusively used 

indirect modeling, yielding 64% RMSE against independent FIA plots, 
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and 66% RMSE against LiDAR-based AGB predictions respectively. Al-

though these kinds of direct comparisons have caveats, they signify that 
similar methods relying on Landsat time series imagery to characterize 
forest dynamics are applicable in multiple domains – from conifer-

dominated western US and Canadian forests with even-aged disturbance 
regimes (White et al., 2017; Kennedy et al., 2018a), to northern hard-

woods and mixed forests of the eastern US with mostly uneven-aged 
disturbance regimes (Section 2.2). This capacity to track changes in 
forests with varying disturbance patterns and management systems is 
needed to ensure that all working forest landowners and landscapes 
are treated accurately and fairly within large-scale carbon accounting 
frameworks (Desrochers et al., 2022).

4.3. Applications for annual AGB maps

Our rigorously evaluated map products have a range of applications 
where knowledge of the spatiotemporal patterns of forest biomass (and 
by extension, forest carbon pools) is needed. Most immediately, given 
our extensive use of FIA plot-level information for model development 
(Section 2.3, Section 2.4) and map assessment (Section 2.8), our annual 
maps provide a translation of FIA information to inputs for spatially ex-

plicit stock-change accounting methods. Such a map-based framework 
offers the capability to summarize stock changes and rates of seques-

tration following FIA’s accounting approach, but with the additional 
flexibility to do so for arbitrary units of area within NYS for any time 
window in the 30 year period (Fig. 4). This increased resolution enabled 
the identification of AGB losses and gains with distinct spatiotempo-

ral signatures attributed to conservation, regulation, and ownership 
patterns across the landscape (Fig. 4 b, c, d). While sample-based stock-

change approaches will capture these outcomes in aggregate, our maps 
can more precisely identify where, when, and how both human and nat-

ural processes are impacting forest carbon stocks across the landscape.

Although modeled data should not supersede direct measurements, 
inventories, or boots-on-the-ground knowledge, the historical perspec-

tive provided by our maps allows us to fill in gaps where management 
records or forest inventory data are not available (Fig. 5). The avail-

ability of both past management information and historical AGB or 
carbon stock information opens the door to a host of opportunities to 
quantify the outcomes of various management regimes (Kaarakka et al., 
2021; Patton et al., 2022). Further, the burden of proving additionality 
for enrollment in carbon offset programs hinges on establishing credi-

ble business-as-usual baselines that are impossible to produce without 
historical data (Gillenwater et al., 2007). Map datasets such as those de-

veloped here can fill this gap for both potential enrollees and program 
managers alike, minimizing many of the otherwise prohibitive up-front 
costs and requirements (Charnley et al., 2010; Kerchner and Keeton, 
2015). More broadly, these historical datasets can provide baselines for 
better understanding present and future forest conditions in response to 
multiple drivers of change, including a rapidly changing climate (Cohen 
et al., 2016; White et al., 2017).

Because we have primarily relied on federally funded and publicly 
available data sources, as well as open source software and tools, we 
have the flexibility to leverage the same methods developed for this 
historical context to fulfill ongoing monitoring (MRV) needs. Our mod-

eling workflow needs only to be updated with annual Landsat imagery 
and FIA inventories along with opportunistic additions of LiDAR collec-

tions (Sugarbaker et al., 2014, 2017) to provide a highly cost-effective 
landscape monitoring framework that is broadly reproducible and ex-

tensible. This approach could be further enhanced by integrating new 
streams of information that have the potential to improve predictive ac-

curacy relative to models trained with Landsat alone (e.g. ESA’s Biomass 
mission – Quegan et al. (2019), NASA’s GEDI mission – Dubayah et al. 
(2014)).

Up-to-date maps of AGB and carbon stocks will allow decision-

makers to prioritize parcels for both protection via purchase of fee 
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titles or conservation easements, as well as for enrollment in improved 
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forest management programs and carbon markets (Merenlender et al., 
2004; Malmsheimer et al., 2008; Kelly et al., 2015; Kerchner and Kee-

ton, 2015). Similarly, timely annual AGB maps can support wall-to-wall 
MRV and harvest monitoring, not necessarily in lieu of essential field 
visits, but as a means to screen those parcels which are likely in compli-

ance from those which require a closer look (Gillenwater et al., 2007). 
Not only would monitoring costs be significantly reduced under such 
a system, likely lowering financial break-even thresholds for potential 
projects (Charnley et al., 2010; Kerchner and Keeton, 2015), but strictly 
random site visits would also be rendered dispensable when a regular 
census of properties or land holdings is otherwise unfeasible. Beyond 
annual monitoring, fine-resolution AGB trajectories derived from our 
30 years of maps could inform time series forecasting and landscape 
simulation studies that aim to predict the carbon consequences of vari-

ous policy and management scenarios (MacLean et al., 2021).

It is critical to engage end-users (policy-makers and stakeholders, 
e.g., the NYS Department of Environmental Conservation) throughout 
the life cycle of a project to maximize the benefits maps like ours can 
offer. A ‘build it, and they will come’ approach falls short because rela-

tionships, mutual understanding, transparency, and pathways to elicit 
and address feedback are essential to foster trust in and eventual adop-

tion of data products (Driscoll et al., 2011; Dietze et al., 2018). Our 
public presentations and engagements with state-level policy-makers 
and non-governmental organizations to date have been effective at in-

creasing confidence and familiarity with these maps. However, there is 
room for increased outreach by directly contacting specific stakeholder 
organizations and disseminating documentation and resources broadly.

Further, the spatial flexibility of our overall approach offers the po-

tential to pre-compute time series summaries or reports for targeted 
areas of interest, including state parks, townships, and management 
units, to help facilitate the transfer of the information contained in these 
map layers to end-users. By sharing the value of these data products 
with groups unwilling or unable to invest the time and resources nec-

essary to digest large geospatial datasets, we may be able to spark new 
collaborations and engagement. This type of data sharing will become 
more tractable with further investments in our internal data infrastruc-

ture and a better understanding of end-user needs.

5. Conclusion

Fine-resolution maps of historical forest dynamics can serve as in-

puts to spatially explicit stock-change accounting frameworks that offer 
critical information for projecting carbon outcomes of land stewardship 
decisions at parcel to landscape scales. There is an essential need for 
methods that can deliver these historical datasets in the near term and 
that offer reproducible, consistent, and widely applicable data prod-

ucts. We have demonstrated three model-based approaches leveraging 
open source data, software, and tools to predict AGB annually, at a 30 
m resolution, across New York State (NYS) for the past three decades 
(1990-2019). Our results show that each of the three approaches pro-

vide valid outputs and offer unique benefits relative to each other, thus 
offering a set of options for NYS where forests are expected to contribute 
substantially as carbon sinks towards achieving a net-zero carbon econ-

omy by 2050. More broadly, the map products produced here can help 
managers and decision-makers maximize the role forested landscapes 
will play in natural climate solutions and policies.
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