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Filtering ground noise from LiDAR returns produces inferior models of forest 
aboveground biomass in heterogenous landscapes
Michael J Mahoney a, Lucas K Johnson a, Eddie Bevilacqua b and Colin M Beier b

aGraduate Program in Environmental Science, State University of New York College of Environmental Science and Forestry, Syracuse, 
New York, USA; bDepartment of Sustainable Resources Management, State University of New York Colle ge of Environmental Science and 
Forestry, Syracuse, New York, USA

ABSTRACT
Airborne LiDAR has become an essential data source for large-scale, high-resolution modeling of 
forest aboveground biomass and carbon stocks, enabling predictions with much higher resolution 
and accuracy than can be achieved using optical imagery alone. Ground noise filtering – that is, 
excluding returns from LiDAR point clouds based on simple height thresholds – is a common 
practice meant to improve the `signal’ content of LiDAR returns by preventing ground returns from 
masking useful information about tree size and condition contained within canopy returns. 
However, ground returns may be helpful for making accurate aboveground biomass predictions 
in heterogeneous landscapes that include a patchy mosaic of vegetation heights and land cover 
types. In this paper, we applied several ground noise filtering thresholds while mapping forest AGB 
across New York State (USA), a heterogenous landscape composed of both contiguously forested 
and highly fragmented areas with mixed land cover types. We fit random forest models to 
predictor sets derived from each filtering intensity threshold and compared model accuracies, 
paying attention to how changes in accuracy correlated with landscape structure. We observed 
that removing ground noise via any height threshold systematically biases many of the LiDAR- 
derived variables used in AGB modeling, with mean correlation (Spearman’s ρ) between variables 
increasing from 0.183 to 0.266. We found that that ground noise filtering yields models of forest 
AGB with lower accuracy than models trained using predictors derived from unfiltered point 
clouds, with RMSE increasing by up to 2.2 Mg ha-1 statewide. Although we only modeled AGB 
for forest cover types, models fit to predictors derived from filtered point clouds performed worse 
as landscape heterogeneity (as measured by patch density and edge density) increased, suggest-
ing ground returns are particularly useful when modeling edge forests. Our results suggest that 
ground filtering should be a carefully considered decision when mapping forest AGB, particularly 
when mapping heterogeneous and highly fragmented landscapes, as ground returns are more 
likely to represent useful `signal’ than extraneous `noise’ in these cases.
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1. Introduction

Accurate assessment of forest carbon stocks for the 
purposes of greenhouse gas accounting and climate 
change mitigation requires high-resolution maps of 
forest aboveground biomass (AGB) across large spa-
tial extents. The production of these maps has been 
aided in recent years by the proliferation of publicly 
available LiDAR data, with initiatives such as the 
United States Geological Survey’s 3D Elevation 
Program releasing airborne LiDAR data publicly for 
84% of the United States between 2016 and 2021 
(U.S. Geological Survey 2019), and the Global 
Ecosystem Dynamics Investigation mission beginning 
to collect spaceborne LiDAR on a global scale in 2018 

(Dubayah et al. 2020). These data sources allow 
researchers access to granular data representing the 
3D profile of the earth’s surface at a landscape scale 
(Dubayah and Drake 2000). By aggregating returns to 
a pixel or object level and computing descriptive 
statistics characterizing the distributions of return 
heights, modelers are able to convert these point 
clouds into tabular data formats which may then be 
used to fit regression models for predicting forest AGB 
(Hawbaker et al. 2010).

However, there exists some disagreement about 
precisely which returns to aggregate when comput-
ing such statistics. While some LiDAR-based forest 
AGB models include all returns when calculating 
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summary statistics (Hudak et al. 2020), others first 
filter out returns below various height thresholds 
when calculating percentile heights (Ma et al. 2018), 
density percentiles (Huang et al. 2019), or their entire 
suite of predictors (García et al. 2010). Filtering is 
typically described as being done to remove ground 
noise from return data, in order to avoid having 
“ground” returns mask any signal contained in the 
remaining “canopy” returns. The height threshold 
used in this process varies across studies, with exam-
ples ranging from 0.3 m (García et al. 2010) to 1.3 m 
(Deo et al. 2017; Ma et al. 2018) to 2 m (Anderson and 
Bolstad 2013) to 2.5 m (Huang et al. 2019).

This diversity of approaches demonstrates a lack 
of consensus about a preprocessing technique that 
produces systematically greater estimates of percen-
tile heights and other computed predictors. The 
practice itself appears to have originated with 
Nilsson (1996), whose early work with airborne 
LiDAR focused on calculating tree heights based on 
the maximum heights of returns, as well as stand 
volume as a function of the mean height of all 
returns. Nilsson does not appear to filter returns 
based on height thresholds; rather, they set the 
height values of all points below 2 m to 0 m, in effect 
reducing the resulting mean height values. Næsset 
(1997) published what may be the earliest rationale 
for ground noise filtering in a study calculating mean 
stand height from LiDAR returns, excluding returns 
below 2 m in order to avoid interference from 
shrubs, rocks, and other understory features. In con-
cert, these two studies have provided the justifica-
tion for filtering out ground returns in a multitude of 
forest modeling studies (Anderson and Bolstad 2013; 
Magnussen and Boudewyn 1998; Wasser et al. 2013), 
to the extent that it appears to now be such 
a commonly accepted practice as to not merit dis-
cussion or citation at all (e.g. White et al. 2015; 
Hawbaker et al. 2010).

Yet this practice, initially justified so as to not 
include the height of stones when calculating the 
mean heights of trees (Næsset 1997), may not be 
necessary or desirable as modelers turn their atten-
tion to stand characteristics such as AGB. Increased 
density of ground returns may be associated with 
sparser stands, and as a result, the left-censoring of 
variables derived from LiDAR pulses by omitting 
ground noise may remove useful information about 
stand structure available for predictive models. This 

common practice may therefore result in inferior 
estimates of forest AGB. Filtering may particularly 
harm predictive accuracy in less contiguously 
forested and mixed-use landscapes, as we might 
expect filtering to exclude more returns in areas 
without tree canopies to intercept and reflect pulses. 
As a result, these filtering procedures may adjust 
LiDAR-derived variables by greater amounts in 
these settings compared to contiguously forested 
regions, given their increased proportion of ground 
returns. It is likely that modeling such heteroge-
neous landscapes will be an increasing concern 
over time, as larger data sets and improved comput-
ing power enables modelers to map forest AGB over 
larger spatial scales; however, there has not been 
much discussion in the literature concerning any 
effects filtering may have on forest AGB predictions 
either in these landscapes or in more homogeneous 
settings.

Such a discussion is particularly timely given the 
current focus on producing high-resolution maps of 
forest AGB. Numerous studies in recent years have 
produced such maps using a combination of publicly 
available LiDAR and field measurements collected 
through the United States Forest Service Forest 
Inventory and Analysis (FIA) program (for instance, 
Johnson et al. 2022; Huang et al. 2019; Hurtt et al. 
2019; Chen et al. 2016), and despite limitations in 
LiDAR density and FIA spatial measurement accuracy 
have produced admirable results. However, such stu-
dies may be limiting their success due to this common 
LiDAR preprocessing procedure.

In this paper, we use publicly available LiDAR 
data sets representing a range of contiguously 
forested and mixed-use landscapes to investigate 
the impacts of ground noise filtering on predictive 
models of forest AGB. We set out to first identify 
how filtering ground noise impacts the distribution 
of commonly used LiDAR-derived predictors, using 
multiple height thresholds as found throughout 
the literature. We then fit models to each of 
these predictor sets using the random forest algo-
rithm (Breiman 2001), a tool commonly used in 
modeling forest AGB, to assess how the different 
predictor distributions affected model perfor-
mance. This study sought to inform current and 
future efforts looking to accurately predict forest 
AGB using models incorporating predictors derived 
from airborne LiDAR data products.
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2. Methods

2.1. LiDAR data sets and site characteristics

In order to identify the impacts of ground filtering on 
predictive models of forest AGB, we obtained 16 
separate leaf-off LiDAR data sets for areas within 
New York State (USA; Figure 1). We refer to these 
data sets as representing different “regions,” though 
these LiDAR regions do not align with administrative 
or ecological boundaries. This data, collected as part 
of a number of cross-agency federal initiatives, resem-
bles the relatively low-density and leaf-off LiDAR 
relied upon in similar forest AGB modeling work (see 
for instance Nilsson et al. (2017), Huang et al. (2019)), 
and closely resembles the remote sensing data used 
in typical modeling practice. Data had pulse densities 
between 1.98 and 3.24 points per square meter. All 
LiDAR data had a vertical accuracy RMSE of � 10 cm. 
While horizontal accuracy was not typically reported, 
expected horizontal RMSE for all data sets would be 
� 68 cm based upon sensor altitude, GNSS posi-

tional error, and INS angular error (ASPRS 2014). 
Where regions overlapped (as shown by overlapping 

boundary lines in Figure 1), data representing the 
most recent LiDAR collection was used. Additional 
information about individual LiDAR data sets is 
included as Supplementary Materials S1.

2.2. Field data

Field measurements of AGB for all trees measuring 
� 12.7 cm (5 in) diameter at breast height were 

taken as part of the United States Department of 
Agriculture (USDA) Forest Inventory and Analysis 
(FIA) program (Gray et al. 2012). The FIA provides 
data from a standardized forest inventory, with field 
plots on forested land being resampled on a rolling 
seven-year basis. FIA plots are composed of four 
identical circular subplots with radii of 7.32 m 
(24 ft), with one subplot centered at the center of 
the plot and the other three subplot centers located 
36.6 m (120 ft) away at azimuths of 360 �, 120 �, and 
240 �. We obtained true plot centroid locations 
under agreement with the USDA and used data 
aggregated from subplots to the plot level for all 
analyses and models. LiDAR data was clipped to 

Figure 1. Locations of LiDAR regions within New York State. Overlapping boundary lines represent overlapping data sets; in areas 
where LiDAR regions overlapped one another, the most recent LiDAR collection was used. More information about each region and 
LiDAR data set is included as Supplementary Materials S1.
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only the measured subplot areas, with subplot loca-
tions estimated based upon the macroplot centroid, 
and then pooled prior to predictor derivation. 
Limitations of this data source include the exclusion 
of trees below 12.7 cm diameter, which likely results 
in underestimates of forest AGB, particularly in 
younger forests and more fragmented landscapes, 
and the relatively high positional inaccuracy of FIA 
plot locations (reported in 2005 to average approxi-
mately 5 m) (Hoppus and Lister 2005). These limita-
tions make associating FIA field measurements of 
forest AGB with specific LiDAR data difficult, particu-
larly given the high positional inaccuracy of FIA plot 
locations compared to LiDAR data collections (ASPRS 
2014). Despite these limitations, however, the FIA 
remains an essential source for forest AGB modeling, 
and we follow the same procedures as the majority 
of USA-focused remote sensing forest AGB modeling 
studies (for instance, Johnson et al. 2022; Huang 
et al. 2019; Hurtt et al. 2019; Chen et al. 2016).

Plots entirely classified as nonforest (which are not 
assigned AGB by the FIA) were excluded from the 
dataset. Only FIA plots sampled the same year as 
LiDAR flights, or FIA plots with measurements both 
before and after the LiDAR acquisition year with 
a difference in AGB � −5% (to allow for forest growth 
or small-scale disturbance) were used for training and 
evaluating models. In situations where FIA year did not 
match LiDAR acquisition year, forest AGB was calcu-
lated by linearly interpolating between the values mea-
sured in the temporally closest FIA samples. Plots were 
additionally excluded if any subplots were marked as 
nonsampled, if FIA measurements indicated 0 Mg ha� 1 

of forest AGB but maximum LiDAR return heights at the 
plot exceeded 10 meters, or if the convex hull of all 
LiDAR returns for a subplot contained less than 90% of 
the subplot’s area. This methodology was chosen to 
closely resemble the existing literature on forest AGB 
mapping (see for instance Huang et al. (2019)). Forest 
AGB measurements were recorded in pounds, then 
converted and area-normalized to units of megagrams 
per hectare (Mg ha� 1).

2.3. LiDAR pre-processing

A digital terrain model (DTM) was calculated for all 
sites using a k-nearest-neighbors inverse-distance 
weighting imputation algorithm (using k = 5) as 
implemented in the lidR R package (Roussel et al. 
2020), fit using the points classified as “ground” 
within the raw LiDAR point cloud data set. The 
calculated terrain was then subtracted from each 
point’s z value to create a height-normalized point 
cloud. Ground noise filtering rules were then 
applied to create five separate points clouds for 
each site, each representing a different ground 
noise filtering approach: one point cloud containing 
all points in the original file (hereafter referred to as 
“unfiltered”), one removing all points classified as 
“ground” in the original metadata (“ground,” 
equivalent to a 0 m threshold), and three removing 
all points with normalized z values below a 0.1, 1, or 
2 meter threshold (“0.1 m,” “1 m,” and “2 m,” respec-
tively). This process is shown as a schematic in 
Figure 2.

Separate sets of 40 predictors, chosen due to their 
prevalence in published models of AGB and forest 
structure, were derived from each of these point 
clouds using the lidR R package (Table 1) 
(Hawbaker et al. 2010; Huang et al. 2019; Dirk, 
Cohen, and Kennedy 2012; Pflugmacher et al. 2014; 
Roussel et al. 2020). Predictors computed for FIA plot 
locations were derived from only the pooled returns 
coincident with the sampled subplot locations, so as 
to not include any returns from the unsampled 
regions of the macroplot. For plots where ground 
noise filtering resulted in the removal of all points, 
variables were set to a default value of 0. As highly 
correlated predictor variables may provide the ran-
dom forest model less information for forest AGB 
predictions, relationships between predictors were 
assessed using Spearman's correlation coefficient. 
Changes in predictor distributions under different 
filtering methodologies were assessed using 
Kolmogorov–Smirnov statistics (Massey 1951).

Figure 2. A diagram representing the LiDAR pre-processing workflow.
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2.4. Model fitting

Models were fit using the ranger R package’s imple-
mentation of the random forest algorithm (Breiman 
2001; Wright and Ziegler 2017a), a popular machine 
learning technique for predicting forest aboveground 
biomass across landscapes (see for instance Huang 
et al. (2019); Hudak et al. (2020)). Separate models 
were fit on predictors calculated using each level of 
ground noise filtering (“unfiltered,” “ground,” “0.1 m,” 
“1 m,” and “2 m” thresholds) for each LiDAR region 
and a combination of all LiDAR regions, for a total of 
85 separate models. Each model used data represent-
ing all available FIA plots within the relevant LiDAR 
region (Section 2.2). Models were fit using only LiDAR 
derived predictors, as it was expected that including 
non-LiDAR derived variables might mediate and con-
found the impacts of ground noise filtering.

Each of these models were tuned separately using 
a standard uniform grid search, with each model 
evaluated using the same 8,892 combinations of 
hyperparameters detailed in Supplementary 
Materials S2. Models from this set were ranked on 
the basis of mean root mean squared error (RMSE) 
from 5-fold cross validation (Stone 1974; Equation (5)), 
with 5 folds chosen to reduce computational 
demands. In order to ensure the best model was 
chosen for each combination, the top 100 models as 

determined from 5-fold cross validation were then 
evaluated again using leave-one-out cross validation 
(Lachenbruch and Mickey 1968), with the final model 
fit using the hyperparameter set with the lowest 
RMSE. This method ensured that each random forest 
compared is the best version of the model that could 
be fit to these predictors, with the intention that any 
difference in model performance will be due to 
ground noise filtering and not stochastic differences 
between models or effort spent in tuning hyperpara-
meters. Recent work has suggested cross-validation 
assessments of model accuracy are likely overoptimis-
tic compared to actual predictive accuracy (Bates, 
Hastie, and Tibshirani 2021), which does not impact 
our aim of comparing ground noise filtering 
approaches within a single study, but should be 
kept in mind when assessing these models as forest 
AGB estimators in their own right.

All modeling work was done using R version 4.0.5 
(R Core Team 2021), using the dplyr (Wickham et al. 
2022), landscapemetrics (Hesselbarth et al. 2019; 
McGarigal and Marks 1995), nlme (Pinheiro and 
Bates 2000), purrr (Henry and Wickham 2020), ranger 
(Wright and Ziegler 2017b), raster (Hijmans 2022a), 
readr (Wickham, Hester, and Bryan 2022), terra 
(Hijmans 2022b), tibble (Müller and Wickham 2022), 
and tidyr (Wickham and Girlich 2022) packages.

2.5. Landscape metrics

The LiDAR regions included in this study represent 
a diversity of landscapes, including both highly devel-
oped regions and large swaths of contiguous forest 
(Figure 3). While all field data was collected at plots 
located entirely within forested areas, forest structure 
and composition is highly affected by the surround-
ing landscape matrix (Reider, Donnelly, and Watling 
2018; Kupfer, Malanson, and Franklin 2006). In parti-
cular, edge effects (the impacts of adjacent nonforest 
environments) influence forest structure and compo-
sition in a number of ways, typically increasing species 
richness, the abundance of non-native species, shrub 
and herbaceous cover, and understory stem and foli-
age density while additionally increasing tree mortal-
ity and decreasing canopy tree abundance and 
canopy cover (Harper et al. 2005), with some of 
these effects remaining significant over 500 m from 
the edge itself (Murcia 1995). The net effect of these 
impacts is that forests near a forest edge are 

Table 1. Definitions of LiDAR-derived predictors used for model 
fitting.

Predictor Definition

H0, H10, . . . H100, 
H95, H99

Decile heights of returns, in meters, as well as 
95th and 99th percentile return heights.

D10, D20 . . . D90 Density of returns above a certain height, as 
a proportion. After return height is divided into 
10 equal bins ranging from 0 to the maximum 
height of returns, this value reflects the 
proportion of returns at or above each 
breakpoint.

N Number of LiDAR returns clipped to the given FIA 
plot or map pixel

ZMEAN, ZMEAN_C Mean height of all returns (ZMEAN) and all 
returns above 2.5 m (ZMEAN_C)

Z_KURT, Z_SKEW Kurtosis and skewness of height of all returns
QUAD_MEAN, 

QUAD_MEAN_C
Quadratic mean height of all returns 

(QUAD_MEAN) and all returns above 2.5 m 
(QUAD_MEAN_C)

CV, CV_C Coefficient of variation for heights of all returns 
(CV) and all returns above 2.5 m (CV_C)

L2, L3, L4, L_CV, 
L_SKEW, L_KURT

L-moments and their ratios as defined by Hosking 
(1990), calculated for heights of all returns

CANCOV Ratio of returns above 2.5 m to all returns (Dirk, 
Cohen, and Kennedy 2012)

HVOL CANCOV * ZMEAN (Dirk, Cohen, and Kennedy 
2012)

RPC1 Ratio of first returns to all returns (Dirk, Cohen, 
and Kennedy 2012)
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consistently characterized by more openings in the 
canopy and more biomass in the understory. As 
a result, it stands to reason that the impacts of ground 
noise filtering on model performance may be asso-
ciated with landscape structure, and that in particular 
model accuracy would be most impacted in forests 
located closer to a forest edge, a more common 
occurrence in highly fragmented landscapes (as char-
acterized by increased patch and edge density).

As such, we investigated how changes in model 
accuracy due to ground noise filtering varied with 
differences in landscape structure. Landscape struc-
ture was quantified for each LiDAR region using 
temporally matching land use/land cover classifica-
tions from USGS LCMAP (Brown et al. 2020). We 
computed the proportion of 30 m pixels classified 
as forest (Equation (1)) and the topographic rug-
gedness index (TRI, Equation (2); Riley, DeGloria, 
and Elliot (1999)) using the terra R package 
(Hijmans 2022b), as well as edge density 
(Equation (3)) in units of meter per hectare and 
patch density (Equation (4)) in units of number of 
patches per 100 hectares for each individual LiDAR 

region using the landscapemetrics R package 
(Hesselbarth et al. 2019; McGarigal and Marks 
1995). 

Forest Cover % ¼
F
A

(1) 

TRI ¼
P8

i¼1 x � xij j

8
(2) 

Edge Density ¼
E
A
� 10000 (3) 

Patch Density ¼
N
A
� 10000 � 100 (4) 

Where F is the area classified as forest in square 
meters, A the total landscape area in square meters, 
x the elevation of a grid cell and xi the elevation of its 
eight neighbors, E the total landscape edge in meters, 
and N the number of patches in the region. For the 
purposes of this study, patches were defined as con-
tiguous areas of 30 m pixels assigned the same land 
cover classification by LCMAP (Brown et al. 2020), and 
edges defined as the perimeters of these patches.

Figure 3. Land cover classifications across LiDAR regions, using land cover classifications from LCMAP (Brown et al. 2020). Lines 
represent LiDAR data set boundaries. In areas where LiDAR data sets overlapped, LCMAP matching the acquisition year of the newest 
LiDAR data was used.
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2.6. Model assessment

Models were evaluated using multiple performance 
metrics in order to capture the variety of ways model 
performance can vary. Performance metrics calcu-
lated included mean absolute error (MAE, Equation 
(7)), which captures the mean magnitude of errors 
across all observations, root-mean-squared error in 
Mg ha� 1 (RMSE, Equation (5)), which weights larger 
errors more heavily than MAE, root-mean-squared 
error as a percentage of mean plot forest AGB (RMSE 
%, Equation (6)), which allows for direct comparison of 
RMSE across regions with differing AGB distributions, 
and the coefficient of determination (R2, Equation (8)), 
which measures the strength of the linear association 
between FIA measurements and model predictions 
(but does not directly reflect predictive accuracy). 
Given the scarcity of field data available for some 
LiDAR regions, metrics were calculated via leave-one- 
out cross validation (Lachenbruch and Mickey 1968). 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð
1
n
Þ
Xn

i¼1

ðyi � ŷiÞ
2

s

(5) 

RMSE % ¼ 100 �
RMSE

�y
(6) 

MAE ¼ ð
1
n
Þ
Xn

i¼1

yi � ŷij j (7) 

R2 ¼ 1 �
Pn

i¼1 yi � ŷið Þ
2

Pn
i¼1 yi � �yð Þ

2 (8) 

Where n is the number of FIA plots included in the 
data set, ŷi is the predicted value of forest AGB, yi the 
forest AGB value measured at the corresponding 
location, and �y the mean forest AGB value from FIA 
field measurements. The difference in model perfor-
mance across filtering thresholds was quantified 
through a linear mixed-effect model representing 
plot absolute error (jyi � ŷij) as a function of filtering 
threshold as a fixed effect with LiDAR region as 
a random effect, fit using the nlme R package 
(Pinheiro and Bates 2000). Lastly, the relationship 
between changes in model accuracy due to ground 
noise filtering and each landscape structure metric 
(Section 2.5) was measured using Spearman’s corre-
lation coefficient (ρ).

3. Results

3.1. Landscape structure

Edge density ranged from 38.73 to 100.17 meters per 
hectare, patch density from 8.63 to 23.70 patches per 
100 hectares, TRI from 0.33 to 3.34. and forest cover-
age from 15.38% to 83.29% across each LiDAR region 
(Figure 4). Edge density and patch density were 
strongly positively correlated (Spearman’s ρ = 0.953), 
as were forest coverage and TRI (Spearman’s ρ = 
0.741). LiDAR regions had between 9 and 126 FIA 
plots available for models after applying plot inclu-
sion rules, for a total of 874 plots in the combined 
data set (Table 2).

3.2. Variable distribution

Filtering out ground noise resulted in shifts in predic-
tor distributions (Figure 5). Filtering returns based 
upon z-thresholds or ground classifications resulted 
in systematically elevated height percentile and 
return density predictors (the H and D prefixed pre-
dictors in Table 1; Figure 5), with differences persist-
ing into the highest percentiles. Notable differences 
in distributions also existed for all L-moment-based 
predictors, with increasing height thresholds asso-
ciated with increased magnitude of difference. Mean 
predictor values for each ground noise filtering 
method, alongside Kolmogorov–Smirnov test statistic 
values comparing the distributions of filtered predic-
tors to that of the unfiltered predictors, are presented 
in Supplementary Materials S3. Shifts in predictor dis-
tributions resulted in changes to covariance among 
variables, as measured via Spearman correlation coef-
ficients. More aggressive filtering approaches were 
generally associated with stronger positive correla-
tions and collinearity between all variables (Figure 6).

3.3. Model performance

Models fit to the unfiltered set of predictors were almost 
always equally or more accurate than those fit to pre-
dictors derived from filtered point clouds (Figure 7, 
Table 3, Table 2). Model accuracy generally decreased 
as filtering thresholds increased, with RMSE % for mod-
els fit to all regions combined increasing from 37.18% 
when using the unfiltered data set to 39.06% when 
using a threshold of 2 meters (Figure 7). An exception 
to this pattern was the Erie, Genesee, & Livingston LiDAR 
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region, which saw improvements in accuracy with filter-
ing procedures; this is likely related to the small sample 
size available for this region (with only 9 FIA plots avail-
able for models) making this region highly susceptible 
to small changes in the predictor space or hyperpara-
meter space. In the linear mixed model representing 
plot absolute error as a function of filtering thresholds, 
with LiDAR region as a random effect, all thresholds had 
positive coefficients, indicating an increase in the mag-
nitude of errors at the plot level (Table 4).

Model accuracy was impacted most by filtering when 
the area mapped was highly fragmented or contained 
large tracts of non-forested land (Table 5). Increasing 
edge and patch densities were both positively correlated 
with Δ RMSE following ground noise filtering, indicating 
greater increases in RMSE after filtering in more hetero-
genous landscapes, while increasing forest cover and TRI 
were negatively correlated with Δ RMSE (Table 5).

4. Discussion

This study set out to evaluate empirical support 
for threshold-based ground noise filtering for 
models of forest AGB. We found that this com-
mon practice results in worse models of forest 
AGB, with lower predictive accuracy across multi-
ple combinations of LiDAR regions and filtering 
thresholds representing a broad spectrum of 
landscape structures. While filtering had minimal 
impact on predictive accuracy in the most con-
tiguously forested regions, the increasing research 
focus on large-scale “wall-to-wall” forest AGB 
mapping and potential for decreased accuracy 
following filtering procedures should encourage 
future modeling studies to use unfiltered point 
clouds when deriving variables for models of for-
est AGB.

Figure 4. Landscape fragmentation metrics and forest cover percentage derived from LCMAP LULC classifications, and topographic 
ruggedness index (TRI) derived from a digital terrain model, for all LiDAR regions used in this project at year of LiDAR acquisition.
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4.1. Ground noise filtering produces inferior 
predictive models

Our study demonstrates that the ground noise filter-
ing approaches commonly used in preprocessing 
data for models of forest AGB systematically biases 
LiDAR-derived variables, with an end result being 
inferior models that produce less accurate predictions 
than models fit on unfiltered data sets (Figure 5, 
Figure 7, Table 3). Increasing intensity of ground 
noise filtering was generally, but not universally, asso-
ciated with worse model performance (Table 2, Table 
3). These patterns were generally stronger as land-
scape fragmentation increased, with the correlation 
between model errors and landscape fragmentation 
increasing as filtering intensity increased.

These results are intuitive when thinking about 
the actual stand characteristics that may lead to an 
abundance or lack of ground returns. Dense forest 
stands making full use of the available light should 
be expected to have fewer returns reaching below 
the uppermost branches, while regions with many 
gaps in the canopy will have more such returns. If 
we conceive of our returns as providing informa-
tion about the height structure of the stand as 
a whole, rather than about individual trees, it 
stands to reason that variables calculated using 
all returns are more informative about stand 
metrics such as forest AGB than those using fil-
tered point clouds which may sacrifice information 
about stand openness. This could explain the 
impact of ground noise filtering seen in this study 

using leaf-off LiDAR; we might expect this impact 
to be even more pronounced were we to use leaf- 
on LiDAR in its place.

Our results also make sense mechanistically given 
the properties of the random forest algorithm used to 
construct forest AGB models in this study. Random 
forests excel at predicting outcomes based upon the 
consensus of weak learners (Breiman 2001), individual 
decision trees which themselves rely upon small and 
ephemeral correlations between predictor variables 
and the outcome of interest. As shown in Figure 6, 
ground noise filtering approaches increase positive 
correlations between predictor variables, with the 
resulting increased collinearities shrinking the num-
ber and magnitude of possible weak correlations 
between individual variables and forest AGB 
(Langford, Schwertman, and Owens 2001). While the 
decision trees comprising the random forest may be 
able to take advantage of the correlations between 
predictor variables and the outcome to achieve simi-
lar accuracy as when trained on unfiltered data sets, 
we would not expect that a process that uniformly 
increases the positive linear correlation between vari-
ables would be associated with improved predictions.

In the cases where models improved post ground 
noise filtering, the improvement in RMSE was gener-
ally minimal and restricted to the 0 and 0.1 m thresh-
olds (Table 2). These regions were generally the most 
contiguously forested (Supplementary Materials S1), 
which may imply fewer gaps in the canopy and there-
fore the filtered points contain less information on 

Table 2. RMSE for each LiDAR region at various ground filtering height thresholds. The complete set of model accuracy metrics for all 
LiDAR regions is included as supplementary materials S4.

RMSE

Region # Plots Unfiltered 0 m 0.1 m 1 m 2 m

All Regions 874 43.826 45.608 46.622 45.734 46.044
Allegany & Steuben 38 43.478 43.102 42.702 44.589 44.577
3 County 117 49.238 50.479 53.164 52.394 53.238
Cayuga & Oswego 19 23.873 39.584 34.126 36.687 39.947
Clinton, Essex & Franklin 126 37.255 39.742 40.821 39.135 38.952
Columbia & Rensselaer 23 42.689 39.721 43.885 48.731 51.126
Erie, Genesee & Livingston 9 56.942 51.461 30.960 32.279 49.731
Franklin & St. Lawrence 113 36.818 37.411 38.121 38.538 38.143
Fulton, Saratoga, Herkimer & Franklin 47 37.840 40.823 39.105 36.496 37.610
Great Lakes 64 33.790 36.419 37.395 35.569 35.497
Long Island 26 38.047 41.796 49.667 41.893 42.107
Madison & Otsego 58 39.014 40.252 41.412 39.937 40.072
Oneida Subbasin 17 40.490 42.839 43.741 45.677 42.455
Schoharie 30 52.186 57.639 55.185 58.110 56.344
Southwest (spring) 37 43.921 47.921 44.715 45.297 44.806
Southwest (fall) 34 57.744 64.114 66.464 66.126 61.060
Warren, Washington & Essex 116 41.072 39.656 40.816 41.054 41.678
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stand structure (Section 4.2). The only two regions 
with notable improvements in RMSE had particularly 
little field data available (Erie, Genessee & Livingston 
having 9 field plots or approximately 1% of all field 
data, and Columbia & Rensselaer having 23 or 

approximately 2.5%), resulting in models with many 
more predictors available than observations. This 
makes it challenging to generalize from these models, 
particularly when compared to similar landscapes 
with more field data available which did not see the 

Figure 5. Selected LiDAR-derived predictor distributions for five ground noise filtering approaches, using all LiDAR regions combined. 
Each subplot is scaled independently so that the X-axis represents the full range of that predictor and the Y-axis represents the full 
range of the kernel density estimate of that predictor.

Figure 6. Mean Spearman correlation coefficients between LiDAR-derived variables calculated from point clouds processed with five 
different ground noise filtering methodologies across the combined data set. Variables with standard deviations of 0 after filtering 
(such as when minimum return height at all plots became 0 due to ground noise filtering) were excluded from calculations.
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same improvements. It may be the case that these 
landscapes, or others not represented by the data 
available to this study, would benefit from some mea-
sure of LiDAR filtering. However, based upon our 
combined, wall-to-wall statewide model we suggest 
that ground noise filtering produces inferior models 
of forest aboveground biomass; when mapping smal-
ler regions with less variety in landscape characteris-
tics, modelers may wish to investigate the impacts of 
ground filtering for themselves.

Insights drawn from these results may not be 
limited to only machine learning-based models. 
Anderson and Bolstad (2013) briefly note that, 
when fitting linear models to predict forest AGB, 
models based on unfiltered point clouds always 
provided better results than those fit to predictors 
calculated using only returns above 2 meters. 
However, few other forest AGB modeling studies 
have performed similar investigations, necessitat-
ing our current study. Our conclusions may not 
apply to AGB models of non-forest systems; inves-
tigations of ground noise filtering as a preproces-
sing step for models of corn AGB found 
improvements in predictive accuracy with relatively 

Figure 7. Model accuracy metrics at each ground noise filtering height threshold. Red line indicates models fit to all LiDAR regions 
(874 FIA plots), while gray lines represent each individual LiDAR region model with more than 10 FIA plots. Metrics are defined in . 
Section 2.5

Table 3. Model accuracy metrics for the model fit to the com-
bined data set at various ground filtering height thresholds. The 
complete set of model accuracy metrics for all LiDAR regions is 
included as supplementary materials S4.

Unfiltered 0 m 0.1 m 1 m 2 m

RMSE 43.826 45.608 46.622 45.734 46.044
RMSE (%) 37.177 38.689 39.548 38.795 39.058
MAE 33.560 35.048 35.974 35.271 35.540
R2 0.609 0.577 0.558 0.574 0.568

Table 4. Results of a linear mixed model representing plot 
absolute error as a function of filtering threshold as a fixed 
effect, with LiDAR region as a random effect.

Coefficient Standard error t p

Intercept 33.215 1.563 21.257 0.000

Filtering threshold
0 m 1.370 0.950 1.442 0.149
0.1 m 2.246 0.950 2.364 0.018
1 m 1.779 0.950 1.872 0.061
2 m 1.941 0.950 2.043 0.041

Table 5. Correlation (Spearman’s ρ) between Δ RMSE (%) and 
landscape structural metrics at various filtering thresholds. Δ 
RMSE (%) represents the difference between RMSE (%) for the 
filtered scenario compared to RMSE (%) without filtering; posi-
tive correlations represent increasing relative error (i.e, differ-
ence in RMSE % versus the unfiltered case) as the landscape 
metric increases. Note that negative correlations indicate les-
sened impact from ground filtering, but not improved models; 
filtering almost always results in higher RMSE values.

Filtering 
threshold

Edge 
density

Patch 
density % Forest cover TRI

0 m 0.026 0.056 −0.368 −0.438
0.1 m 0.141 0.218 −0.382 −0.426
1 m 0.365 0.332 −0.388 −0.194
2 m 0.321 0.326 −0.388 −0.103
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low height thresholds (Luo et al. 2016), emphasiz-
ing that commonly accepted data processing prac-
tices cannot be assumed to transfer across systems 
or domains to new questions of interest.

4.2. Filtering thresholds and landscape 
characteristics

Although we found models fit using predictors 
derived from unfiltered point clouds to be the 
most consistently accurate, the degree to which 
ground noise filtering damaged predictive accu-
racy and the relationship between filtering inten-
sity and accuracy varied between regions. More 
fragmented landscapes tended to have model 
accuracy be more impacted by ground noise fil-
tering, with model error increasing the most in 
landscapes with greater patch and edge densities 
(Table 5). Given that our field measurements (and 
therefore accuracy assessment) only include areas 
delineated as forest by the FIA, this relationship is 
likely driven by the dramatic impacts of edge 
effects on forest structure and composition 
(Harper et al. 2005). Higher patch and edge den-
sity reflect landscapes with large amounts of mar-
ginal forestland, which likely have stands with 
more gaps in the canopy and therefore more 
LiDAR returns at the lower heights investigated 
by this study. Areas with greater forest cover and 
TRI were among the least impacted by ground 
filtering, though the correlation between these 
variables makes interpreting this result difficult. 
It is possible that a contiguous forest permits 
fewer LiDAR returns to the near-ground level, 
meaning that less information is removed 
through filtering procedures; this could explain 
why the correlation between forest coverage and 
Δ RMSE % is stable across filtering thresholds. 
Alternatively, it is possible that rougher land-
scapes (associated with a higher TRI) result in 
more vertical scattering among low-level returns, 
with the result that a point which might be accu-
rately labeled (and filtered) at 0.1 meters in 
a smooth landscape is inaccurately assigned 
a higher elevation and not captured in the filter-
ing procedure, retaining more information for the 
model. This may explain why the magnitude of 
correlation between TRI and Δ RMSE % decreases 

monotonically with increasing filtering thresholds. 
We stress that these are conjectures, however, 
and that we cannot establish any causal linkages 
between forest cover, TRI, and the impacts of 
ground noise filtering in the current study.

5. Conclusion

Our results and examination of the literature sug-
gest that ground noise filtering procedures are 
not well justified as a generic pre-processing pro-
cedure for studies modeling forest AGB, given 
both the potential information lost about stand 
density and structure, and the empirical inferiority 
of models fit using predictors derived from fil-
tered point clouds. This impact is particularly 
notable within mixed-use and otherwise hetero-
geneous landscapes, given the increased propor-
tion of ground returns recorded when mapping 
these areas compared to contiguously forested 
regions. Although well-justified in its original con-
text of modeling mean stand heights, the persis-
tence of ground noise filtering in large-scale wall- 
to-wall LiDAR-based forest AGB modeling appears 
to produce less accurate predictions than could 
be achieved using currently available data. We 
make no such claim about researchers modeling 
other variables using LiDAR-derived predictors. 
For instance, the procedure likely makes sense 
when modeling mean tree heights similar to 
Næsset’s (1997) study which originated the prac-
tice of ground noise filtering. Additionally, while 
we provide evidence that ground noise filtering is 
harmful for models of forest AGB across large 
heterogenous landscapes, it may be possible for 
models of smaller regions and more homoge-
neous landscapes to benefit or be unharmed by 
the procedure. The best data preprocessing pro-
cedure will necessarily depend on the purpose of 
the model (Sambasivan et al. 2021).
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